These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15447525)

  • 1. Picometer-scale dynamical observations of individual membrane proteins: the case of bacteriorhodopsin.
    Okumura Y; Oka T; Kataoka M; Taniguchi Y; Sasaki YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021917. PubMed ID: 15447525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.
    Giliberti V; Polito R; Ritter E; Broser M; Hegemann P; Puskar L; Schade U; Zanetti-Polzi L; Daidone I; Corni S; Rusconi F; Biagioni P; Baldassarre L; Ortolani M
    Nano Lett; 2019 May; 19(5):3104-3114. PubMed ID: 30950626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer reactions across bacteriorhodopsin and along the membrane.
    Heberle J
    Biochim Biophys Acta; 2000 May; 1458(1):135-47. PubMed ID: 10812029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transition of bacteriorhodopsin is preceded by deprotonation of Schiff base: microsecond time-resolved x-ray diffraction study of purple membrane.
    Oka T; Inoue K; Kataoka M; Yagi N
    Biophys J; 2005 Jan; 88(1):436-42. PubMed ID: 15516520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water and bacteriorhodopsin: structure, dynamics, and function.
    Dencher NA; Sass HJ; Büldt G
    Biochim Biophys Acta; 2000 Aug; 1460(1):192-203. PubMed ID: 10984600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation of the L intermediate of bacteriorhodopsin: electric responses to test x-ray structures.
    Tóth-Boconádi R; Dér A; Taneva SG; Keszthelyi L
    Biophys J; 2006 Apr; 90(7):2651-5. PubMed ID: 16399840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane.
    Cartailler JP; Luecke H
    Annu Rev Biophys Biomol Struct; 2003; 32():285-310. PubMed ID: 12598369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration dependence of active core fluctuations in bacteriorhodopsin.
    Wood K; Lehnert U; Kessler B; Zaccai G; Oesterhelt D
    Biophys J; 2008 Jul; 95(1):194-202. PubMed ID: 18339747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM.
    Rhinow D; Hampp NA
    J Phys Chem B; 2008 Oct; 112(41):13116-20. PubMed ID: 18712918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle.
    Lanyi JK; Schobert B
    Biochemistry; 2004 Jan; 43(1):3-8. PubMed ID: 14705925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray-radiation-induced changes in bacteriorhodopsin structure.
    Borshchevskiy VI; Round ES; Popov AN; Büldt G; Gordeliy VI
    J Mol Biol; 2011 Jun; 409(5):813-25. PubMed ID: 21530535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actinic light-energy dependence of proton release from bacteriorhodopsin.
    Tóth-Boconádi R; Taneva SG; Keszthelyi L
    Biophys J; 2005 Oct; 89(4):2605-9. PubMed ID: 16085768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle.
    Ferreira AM; Bashford D
    J Am Chem Soc; 2006 Dec; 128(51):16778-90. PubMed ID: 17177428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
    Kandt C; Gerwert K; Schlitter J
    Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study.
    Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.