These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15447587)

  • 1. Imploding shock wave in a fluid of hard-core particles.
    Gaspard P; Lutsko J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026306. PubMed ID: 15447587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
    Bell JB; Garcia AL; Williams SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016708. PubMed ID: 17677595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and accurate theory for strong shock waves in a dense hard-sphere fluid.
    Montanero JM; López de Haro M; Santos A; Garzó V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7592-5. PubMed ID: 11970718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
    He YG; Tang XZ; Pu YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017301. PubMed ID: 18764085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory.
    Chen X; Rao H; Spiegel EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046308. PubMed ID: 11690147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.
    Hoover WG; Hoover CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046302. PubMed ID: 20481822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic theory and hydrodynamics of dense, reacting fluids far from equilibrium.
    Lutsko JF
    J Chem Phys; 2004 Apr; 120(14):6325-45. PubMed ID: 15267522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and structural properties of repulsive hard-core Yukawa fluid: integral equation theory, perturbation theory and Monte Carlo simulations.
    Cochran TW; Chiew YC
    J Chem Phys; 2004 Jul; 121(3):1480-6. PubMed ID: 15260693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition induced by a shock wave in hard-sphere and hard-disk systems.
    Zhao N; Sugiyama M; Ruggeri T
    J Chem Phys; 2008 Aug; 129(5):054506. PubMed ID: 18698913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.
    Hiejima T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053017. PubMed ID: 25353890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shocks in vertically oscillated granular layers.
    Bougie J; Moon SJ; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051301. PubMed ID: 12513479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thermal noise on pattern onset in continuum simulations of shaken granular layers.
    Bougie J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):032301. PubMed ID: 20365797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of strong-shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026301. PubMed ID: 21405900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study.
    You FQ; Yu YX; Gao GH
    J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision statistics in sheared inelastic hard spheres.
    Bannerman MN; Green TE; Grassia P; Lue L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041308. PubMed ID: 19518225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of the rough hard sphere fluid.
    Kravchenko O; Thachuk M
    J Chem Phys; 2012 Jan; 136(4):044520. PubMed ID: 22299904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory.
    Yu YX; Jin L
    J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test of a new heat-flow equation for dense-fluid shock waves.
    Holian BL; Mareschal M; Ravelo R
    J Chem Phys; 2010 Sep; 133(11):114502. PubMed ID: 20866140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of molecular liquids: cavity and bridge functions of the hard spheroid fluid.
    Cheung DL; Anton L; Allen MP; Masters AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061204. PubMed ID: 16906815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-temperature Navier-Stokes equations for a polyatomic gas derived from kinetic theory.
    Aoki K; Bisi M; Groppi M; Kosuge S
    Phys Rev E; 2020 Aug; 102(2-1):023104. PubMed ID: 32942393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.