These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15447689)

  • 1. A mesenchyme-free culture system to elucidate the mechanism of otic vesicle morphogenesis.
    Miura T; Shiota K; Morriss-Kay G
    J Anat; 2004 Oct; 205(4):297-312. PubMed ID: 15447689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descriptive and experimental analysis of the epithelial remodellings that control semicircular canal formation in the developing mouse inner ear.
    Martin P; Swanson GJ
    Dev Biol; 1993 Oct; 159(2):549-58. PubMed ID: 8405678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential requirements for FGF3, FGF8 and FGF10 during inner ear development.
    Zelarayan LC; Vendrell V; Alvarez Y; Domínguez-Frutos E; Theil T; Alonso MT; Maconochie M; Schimmang T
    Dev Biol; 2007 Aug; 308(2):379-91. PubMed ID: 17601531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Bone morphogenetic protein 4 in zebrafish semicircular canal development.
    Omata Y; Nojima Y; Nakayama S; Okamoto H; Nakamura H; Funahashi J
    Dev Growth Differ; 2007 Dec; 49(9):711-9. PubMed ID: 17908182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse.
    Trowe MO; Shah S; Petry M; Airik R; Schuster-Gossler K; Kist R; Kispert A
    Dev Biol; 2010 Jun; 342(1):51-62. PubMed ID: 20346939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus.
    Wanner SJ; Miller JR
    J Cell Sci; 2007 Aug; 120(Pt 15):2641-51. PubMed ID: 17635997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space.
    Haugas M; Lilleväli K; Hakanen J; Salminen M
    Dev Dyn; 2010 Sep; 239(9):2452-69. PubMed ID: 20652952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms underlying inner ear patterning defects in kreisler mutants.
    Choo D; Ward J; Reece A; Dou H; Lin Z; Greinwald J
    Dev Biol; 2006 Jan; 289(2):308-17. PubMed ID: 16325169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of retinoic acid on otic capsule chondrogenesis in high-density culture suggests disruption of epithelial-mesenchymal interactions.
    Frenz DA; Liu W
    Teratology; 1997 Oct; 56(4):233-40. PubMed ID: 9408973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation of Fos-protein during proliferative growth of the otic vesicle and its relation to differentiation induced by retinoic acid.
    León Y; Sanchez JA; Miner C; Ariza-McNaughton L; Represa JJ; Giraldez F
    Dev Biol; 1995 Jan; 167(1):75-86. PubMed ID: 7851664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions.
    Pirvola U; Zhang X; Mantela J; Ornitz DM; Ylikoski J
    Dev Biol; 2004 Sep; 273(2):350-60. PubMed ID: 15328018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development.
    Brown AS; Epstein DJ
    Development; 2011 Sep; 138(18):3967-76. PubMed ID: 21831920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysmorphogenesis of the inner ear: disruption of extracellular matrix (ECM) formation by an L-proline analog in otic explants.
    Van de Water TR; Galinovic-Schwartz V
    J Craniofac Genet Dev Biol; 1986; 6(2):113-29. PubMed ID: 3722338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six1 controls patterning of the mouse otic vesicle.
    Ozaki H; Nakamura K; Funahashi J; Ikeda K; Yamada G; Tokano H; Okamura HO; Kitamura K; Muto S; Kotaki H; Sudo K; Horai R; Iwakura Y; Kawakami K
    Development; 2004 Feb; 131(3):551-62. PubMed ID: 14695375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of F-actin during mouse facial morphogenesis and its perturbation with cytochalasin D using whole embryo culture.
    Osumi-Yamashita N; Asada S; Eto K
    J Craniofac Genet Dev Biol; 1992; 12(3):130-40. PubMed ID: 1517392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro development of the embryonic mouse inner ear following exposure to trypsin.
    Saver JL; Van de Water TR
    J Exp Zool; 1984 Apr; 230(1):53-61. PubMed ID: 6610020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the hindbrain in patterning the otic vesicle: a study of the zebrafish vhnf1 mutant.
    Lecaudey V; Ulloa E; Anselme I; Stedman A; Schneider-Maunoury S; Pujades C
    Dev Biol; 2007 Mar; 303(1):134-43. PubMed ID: 17137573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of programmed cell death in morphogenesis of the vertebrate inner ear.
    Fekete DM; Homburger SA; Waring MT; Riedl AE; Garcia LF
    Development; 1997 Jun; 124(12):2451-61. PubMed ID: 9199371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inductive tissue interactions during inner ear development.
    Anniko M; Schacht J
    Arch Otorhinolaryngol; 1984; 240(1):17-33. PubMed ID: 6732607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-culture of contiguous developmental fields in a serumless, chemically-defined medium: an in vitro model permissive for coordinate development of the mouse ear.
    Hoffman DS; Bringas P; Slavkin HC
    Int J Dev Biol; 1996 Oct; 40(5):953-64. PubMed ID: 8946243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.