BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1544782)

  • 1. Acute ultrastructural changes of cornea after excimer laser ablation.
    Ozler SA; Liaw LH; Neev J; Raney D; Berns MW
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):540-6. PubMed ID: 1544782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal surface ablation by 193 nm excimer laser and wound healing in rabbits.
    Gaster RN; Binder PS; Coalwell K; Berns M; McCord RC; Burstein NL
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):90-8. PubMed ID: 2912916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ablation rates and surface ultrastructure of 193 nm excimer laser keratectomies.
    Campos M; Wang XW; Hertzog L; Lee M; Clapham T; Trokel SL; McDonnell PJ
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2493-500. PubMed ID: 8325755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 3 excimer laser ablation frequencies (200 Hz, 500 Hz, 1000 Hz) on the cornea using a 1000 Hz scanning-spot excimer laser.
    Khoramnia R; Lohmann CP; Wuellner C; Kobuch KA; Donitzky C; Winkler von Mohrenfels C
    J Cataract Refract Surg; 2010 Aug; 36(8):1385-91. PubMed ID: 20656164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in Descemet's membrane and endothelium after photorefractive keratectomy in rabbits].
    Wu Z; Xu Y; Xie C
    Zhonghua Yan Ke Za Zhi; 2001 Mar; 37(2):90-3. PubMed ID: 11864398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypersensitivity following excimer laser ablation through the corneal epithelium.
    Ishikawa T; del Cerro M; Liang FQ; Kim JC; Aquavella JV
    Refract Corneal Surg; 1992; 8(6):466-74. PubMed ID: 1493120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental setup to determine the pulse energies and radiant exposures for excimer lasers with repetition rates ranging from 100 to 1050 Hz.
    Mrochen M; Wuellner C; Rose K; Donitzky C
    J Cataract Refract Surg; 2009 Oct; 35(10):1806-14. PubMed ID: 19781478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human corneal ablation threshold using the 193-nm ArF excimer laser.
    Berns MW; Chao L; Giebel AW; Liaw LH; Andrews J; VerSteeg B
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):826-30. PubMed ID: 10102278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new procedure for evaluating smoothness of corneal surface following 193-nanometer excimer laser ablation.
    Liang FQ; Geasey SD; del Cerro M; Aquavella JV
    Refract Corneal Surg; 1992; 8(6):459-65. PubMed ID: 1493119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface quality of excimer laser corneal ablation with different frequencies.
    Liang FQ; Ishikawa T; Kim J; del Cerro M; Park SB; Aquavella JV
    Cornea; 1993 Nov; 12(6):500-6. PubMed ID: 8261781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excimer laser smoothing of a reproducible model of anterior corneal surface irregularity.
    Fasano AP; Moreira H; McDonnell PJ; Sinbawy A
    Ophthalmology; 1991 Dec; 98(12):1782-5. PubMed ID: 1775310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative analysis of corneal excisions using argon fluoride excimer laser (193 nanometers)].
    Aron-Rosa D; Gross M; Maden A; Ramirez S; Timsit JC
    Bull Soc Ophtalmol Fr; 1989; 89(8-9):1051-5. PubMed ID: 2620423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of excimer laser radiant exposure on uniformity of ablated corneal surface.
    Fantes FE; Waring GO
    Lasers Surg Med; 1989; 9(6):533-42. PubMed ID: 2601547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial reaction to perforating and non-perforating excimer laser excisions in rabbits.
    Koch JW; Lang GK; Naumann GO
    Refract Corneal Surg; 1991; 7(3):214-22. PubMed ID: 2069914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncontact laser photothermal keratoplasty. III: Histological study in animal eyes.
    Ren Q; Simon G; Parel JM
    J Refract Corneal Surg; 1994; 10(5):529-39. PubMed ID: 7530102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.