These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15448129)
1. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. Akgoz M; Kalyanaraman V; Gautam N J Biol Chem; 2004 Dec; 279(49):51541-4. PubMed ID: 15448129 [TBL] [Abstract][Full Text] [Related]
2. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction. Akgoz M; Kalyanaraman V; Gautam N Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125 [TBL] [Abstract][Full Text] [Related]
3. All G protein βγ complexes are capable of translocation on receptor activation. Ajith Karunarathne WK; O'Neill PR; Martinez-Espinosa PL; Kalyanaraman V; Gautam N Biochem Biophys Res Commun; 2012 May; 421(3):605-11. PubMed ID: 22538369 [TBL] [Abstract][Full Text] [Related]
4. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. O'Neill PR; Karunarathne WK; Kalyanaraman V; Silvius JR; Gautam N Proc Natl Acad Sci U S A; 2012 Dec; 109(51):E3568-77. PubMed ID: 23213235 [TBL] [Abstract][Full Text] [Related]
5. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349 [TBL] [Abstract][Full Text] [Related]
6. Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation. Saini DK; Karunarathne WK; Angaswamy N; Saini D; Cho JH; Kalyanaraman V; Gautam N Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11417-22. PubMed ID: 20534534 [TBL] [Abstract][Full Text] [Related]
7. G protein betagamma11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the alpha subunit type. Azpiazu I; Akgoz M; Kalyanaraman V; Gautam N Cell Signal; 2006 Aug; 18(8):1190-200. PubMed ID: 16242307 [TBL] [Abstract][Full Text] [Related]
8. Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. Hynes TR; Tang L; Mervine SM; Sabo JL; Yost EA; Devreotes PN; Berlot CH J Biol Chem; 2004 Jul; 279(29):30279-86. PubMed ID: 15136579 [TBL] [Abstract][Full Text] [Related]
9. A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. Saini DK; Kalyanaraman V; Chisari M; Gautam N J Biol Chem; 2007 Aug; 282(33):24099-108. PubMed ID: 17581822 [TBL] [Abstract][Full Text] [Related]
10. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits. Mervine SM; Yost EA; Sabo JL; Hynes TR; Berlot CH Mol Pharmacol; 2006 Jul; 70(1):194-205. PubMed ID: 16641313 [TBL] [Abstract][Full Text] [Related]
11. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration. Senarath K; Payton JL; Kankanamge D; Siripurapu P; Tennakoon M; Karunarathne A J Biol Chem; 2018 Feb; 293(8):2974-2989. PubMed ID: 29317505 [TBL] [Abstract][Full Text] [Related]
12. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010 [TBL] [Abstract][Full Text] [Related]
13. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. Irannejad R; Wedegaertner PB J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014 [TBL] [Abstract][Full Text] [Related]
14. Alpha-thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gbetagamma dimers from Galphaq and Galphai2. Goel R; Phillips-Mason PJ; Gardner A; Raben DM; Baldassare JJ J Biol Chem; 2004 Feb; 279(8):6701-10. PubMed ID: 14668344 [TBL] [Abstract][Full Text] [Related]
15. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ. Samaradivakara S; Kankanamge D; Senarath K; Ratnayake K; Karunarathne A Biochem Biophys Res Commun; 2018 Sep; 503(1):165-170. PubMed ID: 29864421 [TBL] [Abstract][Full Text] [Related]
16. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. Khater M; Wei Z; Xu X; Huang W; Lokeshwar BL; Lambert NA; Wu G J Biol Chem; 2021; 296():100325. PubMed ID: 33493514 [TBL] [Abstract][Full Text] [Related]
18. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK. Khater M; Bryant CN; Wu G J Biol Chem; 2021; 296():100805. PubMed ID: 34022220 [TBL] [Abstract][Full Text] [Related]
19. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Smrcka AV; Fisher I Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698 [TBL] [Abstract][Full Text] [Related]
20. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. Yuan C; Sato M; Lanier SM; Smrcka AV J Biol Chem; 2007 Jul; 282(27):19938-47. PubMed ID: 17446173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]