These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15448535)

  • 1. Excitation-contraction coupling in the heart and the negative inotropic action of volatile anesthetics.
    Hanley PJ; ter Keurs HE; Cannell MB
    Anesthesiology; 2004 Oct; 101(4):999-1014. PubMed ID: 15448535
    [No Abstract]   [Full Text] [Related]  

  • 2. Myocardial depressant effects of desflurane: mechanical and electrophysiologic actions in vitro.
    Park WK; Kim MH; Ahn DS; Chae JE; Jee YS; Chung N; Lynch C
    Anesthesiology; 2007 May; 106(5):956-66. PubMed ID: 17457127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sevoflurane protects ventricular myocytes against oxidative stress-induced cellular Ca2+ overload and hypercontracture.
    Kojima A; Kitagawa H; Omatsu-Kanbe M; Matsuura H; Nosaka S
    Anesthesiology; 2013 Sep; 119(3):606-20. PubMed ID: 23571639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of anesthesia-induced depression of myocardial function.
    De Hert S; Adriaensen H
    Acta Anaesthesiol Belg; 1989; 40(3):207-18. PubMed ID: 2479208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the inotropic action of halothane on intact rat ventricular myocytes.
    Harrison SM; Robinson M; Davies LA; Hopkins PM; Boyett MR
    Br J Anaesth; 1999 Apr; 82(4):609-21. PubMed ID: 10472232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halothane inhibition of recombinant cardiac L-type Ca2+ channels expressed in HEK-293 cells.
    Gingrich KJ; Tran S; Nikonorov IM; Blanck TJ
    Anesthesiology; 2005 Dec; 103(6):1156-66. PubMed ID: 16306727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen free radicals and excitation-contraction coupling.
    Goldhaber JI; Qayyum MS
    Antioxid Redox Signal; 2000; 2(1):55-64. PubMed ID: 11232601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of volatile anesthetics on the force-frequency relation in human ventricular myocardium: the role of the sarcoplasmic reticulum calcium-release channel.
    Schotten U; Greiser M; Braun V; Karlein C; Schoendube F; Hanrath P
    Anesthesiology; 2001 Nov; 95(5):1160-8. PubMed ID: 11684985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coming full circle: membrane potential, sarcolemmal calcium influx and excitation-contraction coupling in heart muscle.
    Hobai IA; Levi AJ
    Cardiovasc Res; 1999 Dec; 44(3):477-87. PubMed ID: 10690279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential modulation of the cardiac L- and T-type calcium channel currents by isoflurane.
    Camara AK; Begic Z; Kwok WM; Bosnjak ZJ
    Anesthesiology; 2001 Aug; 95(2):515-24. PubMed ID: 11506128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of halothane on contraction and intracellular calcium in ventricular myocytes from streptozotocin-induced diabetic rats.
    Rithalia A; Qureshi MA; Howarth FC; Harrison SM
    Br J Anaesth; 2004 Feb; 92(2):246-53. PubMed ID: 14722178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different inhibitory effects of volatile anesthetics on T- and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles.
    Yamakage M; Chen X; Tsujiguchi N; Kamada Y; Namiki A
    Anesthesiology; 2001 Apr; 94(4):683-93. PubMed ID: 11379691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of acetylcholine on intracellular distribution of calcium antimonate in the guinea pig atria.
    Elzanowski W; Lewartowski B; Beresewicz A; Wojtczak J
    Acta Physiol Pol; 1976; 27(3):235-47. PubMed ID: 941685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Contraction-relaxation cycle in the heart].
    Verbolovich VP; Esyrev OV
    Usp Sovrem Biol; 1981; 91(2):269-76. PubMed ID: 6264703
    [No Abstract]   [Full Text] [Related]  

  • 15. Calcium source for excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks.
    Kondo N; Shibata S
    Science; 1984 Aug; 225(4662):641-3. PubMed ID: 6740332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction.
    Wier WG; Hess P
    J Gen Physiol; 1984 Mar; 83(3):395-415. PubMed ID: 6325588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PN 200-110, a new calcium antagonist: electrophysiological, inotropic, and chronotropic effects on guinea pig myocardial tissue and effects on contraction and calcium uptake of rabbit aorta.
    Hof RP; Scholtysik G; Loutzenhiser R; Vuorela HJ; Neumann P
    J Cardiovasc Pharmacol; 1984; 6(3):399-406. PubMed ID: 6202964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart?
    Nawrath H
    Nature; 1977 May; 267(5606):72-4. PubMed ID: 193045
    [No Abstract]   [Full Text] [Related]  

  • 19. Negative inotropic effect of beta-blockers in the guinea-pig atrium after preincubation with isoprenaline.
    Ohba M; Sakamoto Y; Tomita T
    Eur J Pharmacol; 1980 Jul; 65(2-3):257-66. PubMed ID: 6105086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of ethmozine on action potentials and myocardial contraction in guinea pigs].
    Nesterenko VV; Rozenshtraukh LV
    Biull Eksp Biol Med; 1982 Sep; 94(9):73-6. PubMed ID: 6293624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.