These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15448692)

  • 1. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes.
    Fong SS; Palsson BØ
    Nat Genet; 2004 Oct; 36(10):1056-8. PubMed ID: 15448692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico design and adaptive evolution of Escherichia coli for production of lactic acid.
    Fong SS; Burgard AP; Herring CD; Knight EM; Blattner FR; Maranas CD; Palsson BO
    Biotechnol Bioeng; 2005 Sep; 91(5):643-8. PubMed ID: 15962337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.
    Hua Q; Joyce AR; Fong SS; Palsson BØ
    Biotechnol Bioeng; 2006 Dec; 95(5):992-1002. PubMed ID: 16807925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale.
    Herring CD; Raghunathan A; Honisch C; Patel T; Applebee MK; Joyce AR; Albert TJ; Blattner FR; van den Boom D; Cantor CR; Palsson BØ
    Nat Genet; 2006 Dec; 38(12):1406-12. PubMed ID: 17086184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer.
    Pál C; Papp B; Lercher MJ
    Nat Genet; 2005 Dec; 37(12):1372-5. PubMed ID: 16311593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase.
    Nicolas C; Kiefer P; Letisse F; Krömer J; Massou S; Soucaille P; Wittmann C; Lindley ND; Portais JC
    FEBS Lett; 2007 Aug; 581(20):3771-6. PubMed ID: 17631881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation.
    Lee SJ; Lee DY; Kim TY; Kim BH; Lee J; Lee SY
    Appl Environ Microbiol; 2005 Dec; 71(12):7880-7. PubMed ID: 16332763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of two recombinant chloramphenicol acetyltransferase variants in highly reduced genome Escherichia coli strains.
    Sharma SS; Campbell JW; Frisch D; Blattner FR; Harcum SW
    Biotechnol Bioeng; 2007 Dec; 98(5):1056-70. PubMed ID: 17497738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F
    J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Test of synergistic interactions among deleterious mutations in bacteria.
    Elena SF; Lenski RE
    Nature; 1997 Nov; 390(6658):395-8. PubMed ID: 9389477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic network analysis revealed distinct routes of deletion effects between essential and non-essential genes.
    Ma J; Zhang X; Ung CY; Chen YZ; Li B
    Mol Biosyst; 2012 Apr; 8(4):1179-86. PubMed ID: 22278128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli.
    Ghim CM; Goh KI; Kahng B
    J Theor Biol; 2005 Dec; 237(4):401-11. PubMed ID: 15975601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model.
    Fong SS; Marciniak JY; Palsson BØ
    J Bacteriol; 2003 Nov; 185(21):6400-8. PubMed ID: 14563875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses.
    Levanon SS; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Mar; 89(5):556-64. PubMed ID: 15669087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of gene co-regulation between two prokaryotes: Bacillus subtilis and Escherichia coli.
    Okuda S; Kawashima S; Goto S; Kanehisa M
    Genome Inform; 2005; 16(1):116-24. PubMed ID: 16362913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bottom-up approach to gene regulation.
    Guido NJ; Wang X; Adalsteinsson D; McMillen D; Hasty J; Cantor CR; Elston TC; Collins JJ
    Nature; 2006 Feb; 439(7078):856-60. PubMed ID: 16482159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12.
    Baba T; Huan HC; Datsenko K; Wanner BL; Mori H
    Methods Mol Biol; 2008; 416():183-94. PubMed ID: 18392968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evolution of an essential Bacillus gene in an E. coli host.
    Larios-Sanz M; Travisano M
    Methods Mol Biol; 2009; 532():269-87. PubMed ID: 19271191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.