These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15448902)

  • 1. [Bioartificial materials in urology].
    Sternberg K; Selent C; Hakansson N; Töllner J; Langer T; Seiter H; Schmitz KP
    Urologe A; 2004 Oct; 43(10):1200-7. PubMed ID: 15448902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a novel gradient degradable ureteral stent in a beagle dog model.
    Jin L; Yao L; Zhou Y; Dai G; Zhang W; Xue B
    J Biomater Appl; 2018 Sep; 33(3):466-473. PubMed ID: 30089434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stents as a platform for drug delivery.
    Lei L; Guo SR; Chen WL; Rong HJ; Lu F
    Expert Opin Drug Deliv; 2011 Jun; 8(6):813-31. PubMed ID: 21548713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Tissue engineering of the urethra and ureter].
    Corvin S; Feil G; Stenzl A
    Urologe A; 2004 Oct; 43(10):1213-6. PubMed ID: 15455203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility testing of a new bioabsorbable X-ray positive SR-PLA 96/4 urethral stent.
    Isotalo T; Alarakkola E; Talja M; Tammela TL; Välimaa T; Törmälä P
    J Urol; 1999 Nov; 162(5):1764-7. PubMed ID: 10524932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable sirolimus-loaded poly(lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application.
    Luderer F; Löbler M; Rohm HW; Gocke C; Kunna K; Köck K; Kroemer HK; Weitschies W; Schmitz KP; Sternberg K
    J Biomater Appl; 2011 May; 25(8):851-75. PubMed ID: 20237179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioabsorbable and biodegradable stents in urology.
    Talja M; Välimaa T; Tammela T; Petas A; Törmälä P
    J Endourol; 1997 Dec; 11(6):391-7. PubMed ID: 9440846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for the research and application of biodegradable ureteral stents: from bench to bedside.
    Wang L; Yang G; Xie H; Chen F
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1657-1666. PubMed ID: 30141744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local drug delivery for treatment of coronary and peripheral artery disease.
    Gertz ZM; Wilensky RL
    Cardiovasc Ther; 2011 Dec; 29(6):e54-66. PubMed ID: 20553281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease.
    Kohn J; Zeltinger J
    Expert Rev Med Devices; 2005 Nov; 2(6):667-71. PubMed ID: 16293093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally smart polymers.
    Williams D
    Med Device Technol; 2005 May; 16(4):9-10, 13. PubMed ID: 15941191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.
    Ifkovits JL; Burdick JA
    Tissue Eng; 2007 Oct; 13(10):2369-85. PubMed ID: 17658993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular response and mechanical integrity of the new biodegradable polymer coated sirolimus-eluting PROLIM stent implanted in porcine coronary arteries.
    Milewski K; Gorycki B; Buszman PP; Jelonek M; Beaudry D; Lapointe JM; Guy LG; Abusamra M; Pająk J; Kinasz W; Wojakowski W; Leclerc G; Gil RJ; Buszman PE
    Kardiol Pol; 2012; 70(7):703-11. PubMed ID: 22825946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries.
    Nakano K; Egashira K; Masuda S; Funakoshi K; Zhao G; Kimura S; Matoba T; Sueishi K; Endo Y; Kawashima Y; Hara K; Tsujimoto H; Tominaga R; Sunagawa K
    JACC Cardiovasc Interv; 2009 Apr; 2(4):277-83. PubMed ID: 19463437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ureteral stent-associated complications--where we are and where we are going.
    Lange D; Bidnur S; Hoag N; Chew BH
    Nat Rev Urol; 2015 Jan; 12(1):17-25. PubMed ID: 25534997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioabsorbable self-expandable, self-reinforced poly-L-lactic acid urethral stent for recurrent urethral strictures: long-term results.
    Isotalo T; Talja M; Välimaa T; Törmälä P; Tammela TL
    J Endourol; 2002 Dec; 16(10):759-62. PubMed ID: 12542880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New bioabsorbable polylactide ureteral stent in the treatment of ureteral lesions: an experimental study.
    Lumiaho J; Heino A; Tunninen V; Ala-Opas M; Talja M; Välimaa T; Törmälä P
    J Endourol; 1999 Mar; 13(2):107-12. PubMed ID: 10213104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a novel degradable ureteral stent in a porcine model.
    Hadaschik BA; Paterson RF; Fazli L; Clinkscales KW; Shalaby SW; Chew BH
    J Urol; 2008 Sep; 180(3):1161-6. PubMed ID: 18639278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encrustation and strength retention properties of the self-expandable, biodegradable, self-reinforced L-lactide-glycolic acid co-polymer 80:20 spiral urethral stent in vitro.
    Laaksovirta S; Välimaa T; Isotalo T; Törmälä P; Talja M; Tammela TL
    J Urol; 2003 Aug; 170(2 Pt 1):468-71. PubMed ID: 12853801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.