BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15449293)

  • 1. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses.
    Visser D; van Zuylen GA; van Dam JC; Eman MR; Pröll A; Ras C; Wu L; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2004 Oct; 88(2):157-67. PubMed ID: 15449293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor.
    Mashego MR; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.
    Sánchez NS; Calahorra M; González-Hernández JC; Peña A
    Yeast; 2006 Apr; 23(5):361-74. PubMed ID: 16598688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 1. A multidimensional kinetic linked-function analysis.
    Mesecar AD; Nowak T
    Biochemistry; 1997 Jun; 36(22):6792-802. PubMed ID: 9184162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetaldehyde mediates growth stimulation of ethanol-stressed Saccharomyces cerevisiae: evidence of a redox-driven mechanism.
    Vriesekoop F; Barber AR; Pamment NB
    Biotechnol Lett; 2007 Jul; 29(7):1099-103. PubMed ID: 17410338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycolytic oscillations and limits on robust efficiency.
    Chandra FA; Buzi G; Doyle JC
    Science; 2011 Jul; 333(6039):187-92. PubMed ID: 21737735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.
    Gonzalez B; de Graaf A; Renaud M; Sahm H
    Yeast; 2000 Apr; 16(6):483-97. PubMed ID: 10790685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanisms of glycolytic oscillations in yeast.
    Madsen MF; Danø S; Sørensen PG
    FEBS J; 2005 Jun; 272(11):2648-60. PubMed ID: 15943800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis.
    Schaub J; Reuss M
    Biotechnol Prog; 2008; 24(6):1402-7. PubMed ID: 19194955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.
    Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L
    FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.
    Vriesekoop F; Haass C; Pamment NB
    FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes.
    Götz R; Schlüter E; Shoham G; Zimmermann FK
    Yeast; 1999 Nov; 15(15):1619-29. PubMed ID: 10572259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations.
    Theobald U; Mailinger W; Baltes M; Rizzi M; Reuss M
    Biotechnol Bioeng; 1997 Jul; 55(2):305-16. PubMed ID: 18636489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate.
    Aboka FO; Heijnen JJ; van Winden WA
    FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.