BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

738 related articles for article (PubMed ID: 15449300)

  • 21. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils.
    Fava F; Bertin L; Fedi S; Zannoni D
    Biotechnol Bioeng; 2003 Feb; 81(4):381-90. PubMed ID: 12491523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation.
    Su XM; Bamba AM; Zhang S; Zhang YG; Hashmi MZ; Lin HJ; Ding LX
    Lett Appl Microbiol; 2018 Apr; 66(4):277-283. PubMed ID: 29350767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil.
    Potin O; Veignie E; Rafin C
    FEMS Microbiol Ecol; 2004 Dec; 51(1):71-8. PubMed ID: 16329856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity].
    Wang F; Su ZC; Yang H; Li XJ; Yang GP; Dong DB
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3020-6. PubMed ID: 20353072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.
    Sawulski P; Clipson N; Doyle E
    Biodegradation; 2014 Nov; 25(6):835-47. PubMed ID: 25095739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil.
    Fava F; Piccolo A
    Biotechnol Bioeng; 2002 Jan; 77(2):204-11. PubMed ID: 11753927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils.
    Huesemann MH; Hausmann TS; Fortman TJ
    Biodegradation; 2004 Aug; 15(4):261-74. PubMed ID: 15473555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.
    Lukić B; Huguenot D; Panico A; Fabbricino M; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15041-52. PubMed ID: 27083907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment.
    Adrion AC; Nakamura J; Shea D; Aitken MD
    Environ Sci Technol; 2016 Apr; 50(7):3838-45. PubMed ID: 26919662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting.
    Antizar-Ladislao B; Beck AJ; Spanova K; Lopez-Real J; Russell NJ
    J Hazard Mater; 2007 Jun; 144(1-2):340-7. PubMed ID: 17113229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.
    Wang C; Wang Z; Li Z; Ahmad R
    Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the Modulation of Dissolved Organic Matter on Microbial Remediation of PAH-Contaminated Soils.
    Han XM; Liu YR; Zhang LM; He JZ
    Microb Ecol; 2015 Aug; 70(2):400-10. PubMed ID: 25707714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil.
    Han X; Hu H; Shi X; Zhang L; He J
    Chemosphere; 2017 Apr; 172():286-293. PubMed ID: 28086156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation?
    Ortega-Calvo JJ; Tejeda-Agredano MC; Jimenez-Sanchez C; Congiu E; Sungthong R; Niqui-Arroyo JL; Cantos M
    J Hazard Mater; 2013 Oct; 261():733-45. PubMed ID: 23583067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials.
    Yang Y; Zhang N; Xue M; Lu ST; Tao S
    Environ Pollut; 2011 Feb; 159(2):591-5. PubMed ID: 21044811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis.
    Ma B; He Y; Chen HH; Xu JM; Rengel Z
    Environ Pollut; 2010 Mar; 158(3):855-61. PubMed ID: 19854547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor.
    Rehmann L; Prpich GP; Daugulis AJ
    Chemosphere; 2008 Oct; 73(5):798-804. PubMed ID: 18640698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.