These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15449608)

  • 1. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.
    Dubbs JM; Tabita FR
    FEMS Microbiol Rev; 2004 Jun; 28(3):353-76. PubMed ID: 15449608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism.
    Tichi MA; Tabita FR
    J Bacteriol; 2001 Nov; 183(21):6344-54. PubMed ID: 11591679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
    Dangel AW; Tabita FR
    J Bacteriol; 2015 Nov; 197(22):3488-98. PubMed ID: 26324454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria.
    Kusian B; Bowien B
    FEMS Microbiol Rev; 1997 Sep; 21(2):135-55. PubMed ID: 9348665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha.
    Bowien B; Kusian B
    Arch Microbiol; 2002 Aug; 178(2):85-93. PubMed ID: 12115053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a functional similarity between the two-component regulatory systems RegSR, ActSR, and RegBA (PrrBA) in alpha-Proteobacteria.
    Emmerich R; Hennecke H; Fischer HM
    Arch Microbiol; 2000 Nov; 174(5):307-13. PubMed ID: 11131020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16.
    Gruber S; Schwab H; Heidinger P
    J Biotechnol; 2017 Sep; 257():78-86. PubMed ID: 28687513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation.
    Joshi HM; Tabita FR
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14515-20. PubMed ID: 8962083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides.
    Farmer RM; Tabita FR
    Microbiology (Reading); 2015 Nov; 161(11):2184-91. PubMed ID: 26306848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus.
    Vichivanives P; Bird TH; Bauer CE; Robert Tabita F
    J Mol Biol; 2000 Jul; 300(5):1079-99. PubMed ID: 10903856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.
    Esparza M; Jedlicki E; Dopson M; Holmes DS
    FEMS Microbiol Lett; 2015 Aug; 362(15):fnv108. PubMed ID: 26152700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria.
    Hädicke O; Grammel H; Klamt S
    BMC Syst Biol; 2011 Sep; 5():150. PubMed ID: 21943387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides.
    Dangel AW; Tabita FR
    Mol Microbiol; 2009 Feb; 71(3):717-29. PubMed ID: 19077171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and Cyanobacteria.
    Gibson JL; Tabita FR
    Arch Microbiol; 1996 Sep; 166(3):141-50. PubMed ID: 8703190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RegB/RegA, a highly conserved redox-responding global two-component regulatory system.
    Elsen S; Swem LR; Swem DL; Bauer CE
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):263-79. PubMed ID: 15187184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of cbb gene transcription levels of four typical sulfur-oxidizing bacteria to the CO2 concentration and its effect on their carbon fixation efficiency during sulfur oxidation.
    Wang YN; Wang L; Tsang YF; Fu X; Hu J; Li H; Le Y
    Enzyme Microb Technol; 2016 Oct; 92():31-40. PubMed ID: 27542742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.