These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15449608)

  • 21. Biotechnology of Anoxygenic Phototrophic Bacteria.
    Frigaard NU
    Adv Biochem Eng Biotechnol; 2016; 156():139-154. PubMed ID: 26907551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria.
    McKinlay JB; Harwood CS
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11669-75. PubMed ID: 20558750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox homeostasis phenotypes in RubisCO-deficient Rhodobacter sphaeroides via ensemble modeling.
    Rizk ML; Laguna R; Smith KM; Tabita FR; Liao JC
    Biotechnol Prog; 2011; 27(1):15-22. PubMed ID: 20939096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Something from almost nothing: carbon dioxide fixation in chemoautotrophs.
    Shively JM; van Keulen G; Meijer WG
    Annu Rev Microbiol; 1998; 52():191-230. PubMed ID: 9891798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Interplay between Photosynthesis, CO
    Alsiyabi A; Immethun CM; Saha R
    Sci Rep; 2019 Sep; 9(1):12638. PubMed ID: 31477760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Hydrogen in metabolism of purple bacteria and prospects for practical applications].
    Tsygankov AA; Khusnutdinova AN
    Mikrobiologiia; 2015; 84(1):3-26. PubMed ID: 25916143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the carbonic anhydrases and autotrophic carbon dioxide fixation pathways of high CO
    Khandavalli LVNS; Lodha T; Abdullah M; Guruprasad L; Chintalapati S; Chintalapati VR
    Microbiol Res; 2018 Oct; 215():130-140. PubMed ID: 30172299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth.
    Tang KH; Yue H; Blankenship RE
    BMC Microbiol; 2010 May; 10():150. PubMed ID: 20497547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data.
    Mangiapia M; Scott K
    FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26940292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium.
    Walworth NG; Lee MD; Fu FX; Hutchins DA; Webb EA
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7367-E7374. PubMed ID: 27830646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
    Rey FE; Oda Y; Harwood CS
    J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen fixation in acidophile iron-oxidizing bacteria: the nif regulon of Leptospirillum ferrooxidans.
    Parro V; Moreno-Paz M
    Res Microbiol; 2004 Nov; 155(9):703-9. PubMed ID: 15501646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA.
    Schmitz RA; Klopprogge K; Grabbe R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):235-42. PubMed ID: 11931553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unravelling the regulatory twist--regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s).
    Joshi GS; Bobst CE; Tabita FR
    Mol Microbiol; 2011 May; 80(3):756-71. PubMed ID: 21362064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Key internal factors leading to the variability in CO
    Wang YN; Kai Y; Wang L; Tsang YF; Fu X; Hu J; Xie Y
    J Environ Manage; 2020 Oct; 271():110957. PubMed ID: 32579519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria.
    Omata T; Gohta S; Takahashi Y; Harano Y; Maeda S
    J Bacteriol; 2001 Mar; 183(6):1891-8. PubMed ID: 11222586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria.
    Imam S; Noguera DR; Donohue TJ
    mBio; 2015 Feb; 6(1):. PubMed ID: 25650399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803.
    Orf I; Schwarz D; Kaplan A; Kopka J; Hess WR; Hagemann M; Klähn S
    Plant Cell Physiol; 2016 Oct; 57(10):2232-2243. PubMed ID: 27638927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detailed profiling of carbon fixation of
    Cheng HT; Lo SC; Huang CC; Ho TY; Yang YT
    Synth Syst Biotechnol; 2019 Sep; 4(3):165-172. PubMed ID: 31528741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Voltage Influence in Carbon Dioxide Fixation Process by a Photo-Bioelectrochemical System under Photoheterotrophy.
    Edreira SD; Barba S; Vasiliadou IA; Molina R; Melero JA; Espada JJ; Puyol D; Martínez F
    Microorganisms; 2021 Feb; 9(3):. PubMed ID: 33668742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.