BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15450189)

  • 1. Arsenical resistance genes in Saccharomyces douglasii and other yeast species undergo rapid evolution involving genomic rearrangements and duplications.
    Maciaszczyk E; Wysocki R; Golik P; Lazowska J; Ulaszewski S
    FEMS Yeast Res; 2004 Sep; 4(8):821-32. PubMed ID: 15450189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae.
    Bobrowicz P; Wysocki R; Owsianik G; Goffeau A; Ułaszewski S
    Yeast; 1997 Jul; 13(9):819-28. PubMed ID: 9234670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae.
    Vujcic M; Shroff M; Singh KK
    Cancer Res; 2007 Oct; 67(20):9740-9. PubMed ID: 17942904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion.
    Byrnes JK; Morris GP; Li WH
    Mol Biol Evol; 2006 Jun; 23(6):1136-43. PubMed ID: 16527865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.
    Ilina Y; Sloma E; Maciaszczyk-Dziubinska E; Novotny M; Thorsen M; Wysocki R; Tamás MJ
    Biochem J; 2008 Nov; 415(3):467-75. PubMed ID: 18593383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast chromosomes have been significantly reshaped during their evolutionary history.
    Langkjaer RB; Nielsen ML; Daugaard PR; Liu W; Piskur J
    J Mol Biol; 2000 Dec; 304(3):271-88. PubMed ID: 11090273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and molecular analysis of hybrids in the genus Saccharomyces involving S. cerevisiae, S. uvarum and a new species, S. douglasii.
    Hawthorne D; Philippsen P
    Yeast; 1994 Oct; 10(10):1285-96. PubMed ID: 7900417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tobacco gene Ntcyc07 confers arsenite tolerance in Saccharomyces cerevisiae by reducing the steady state levels of intracellular arsenic.
    Mok YG; Lee BD; Kim YJ; Lee CE; Kim DG; Lee J; Shim J; Meng Y; Rosen BP; Choi JS; Shin HS; Kim SK; Lee JS; Hwang S
    FEBS Lett; 2008 Mar; 582(6):916-24. PubMed ID: 18294968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport.
    Wysocki R; Bobrowicz P; Ułaszewski S
    J Biol Chem; 1997 Nov; 272(48):30061-6. PubMed ID: 9374482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to Arsenite and Arsenate in
    Stefanini I; Di Paola M; Liti G; Marranci A; Sebastiani F; Casalone E; Cavalieri D
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate of promoter class turn-over in yeast evolution.
    Bazykin GA; Kondrashov AS
    BMC Evol Biol; 2006 Feb; 6():14. PubMed ID: 16472383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.
    Oakley TH; Gu Z; Abouheif E; Patel NH; Li WH
    Mol Biol Evol; 2005 Jan; 22(1):40-50. PubMed ID: 15356281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.
    Scannell DR; Byrne KP; Gordon JL; Wong S; Wolfe KH
    Nature; 2006 Mar; 440(7082):341-5. PubMed ID: 16541074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher duplicability of less important genes in yeast genomes.
    He X; Zhang J
    Mol Biol Evol; 2006 Jan; 23(1):144-51. PubMed ID: 16151181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular analysis of alpha-galactosidase MEL genes from Saccharomyces sensu stricto].
    Naumova ES; Korshunova IV; Naumov GI
    Mol Biol (Mosk); 2003; 37(5):825-33. PubMed ID: 14593919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rewiring of the yeast transcriptional network through the evolution of motif usage.
    Ihmels J; Bergmann S; Gerami-Nejad M; Yanai I; McClellan M; Berman J; Barkai N
    Science; 2005 Aug; 309(5736):938-40. PubMed ID: 16081737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Birth of a metabolic gene cluster in yeast by adaptive gene relocation.
    Wong S; Wolfe KH
    Nat Genet; 2005 Jul; 37(7):777-82. PubMed ID: 15951822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.