BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15450189)

  • 21. Two yeast chromosomes are related by a fossil duplication of their centromeric regions.
    Lalo D; Stettler S; Mariotte S; Slonimski PP; Thuriaux P
    C R Acad Sci III; 1993; 316(4):367-73. PubMed ID: 8402262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The CBP2 gene from Saccharomyces douglasii is a functional homologue of the Saccharomyces cerevisiae gene and is essential for respiratory growth in the presence of a wild-type (intron-containing) mitochondrial genome.
    Li GY; Tian GL; Slonimski PP; Herbert CJ
    Mol Gen Genet; 1996 Feb; 250(3):316-22. PubMed ID: 8602146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The SUV3 gene from Saccharomyces douglasii is a functional equivalent of its Saccharomyces cerevisiae orthologue and is essential for respiratory growth.
    Golik P; Zwolinska U; Stepien PP; Lazowska J
    FEMS Yeast Res; 2004 Jan; 4(4-5):477-85. PubMed ID: 14734028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A.nidulans and human.
    Tüncher A; Spröte P; Gehrke A; Brakhage AA
    J Mol Biol; 2005 Sep; 352(3):517-33. PubMed ID: 16098534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely related yeasts Saccharomyces cerevisiae and Saccharomyces douglasii: a paradigm of incipient evolution.
    Herbert CJ; Dujardin G; Labouesse M; Slonimski PP
    Mol Gen Genet; 1988 Aug; 213(2-3):297-309. PubMed ID: 3054483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The [URE3] prion is not conserved among Saccharomyces species.
    Talarek N; Maillet L; Cullin C; Aigle M
    Genetics; 2005 Sep; 171(1):23-34. PubMed ID: 15956663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comparative molecular-genetic analysis of the beta-fructosidases in yeast Saccharomyces].
    Korshunova IV; Naumova ES; Naumov GI
    Mol Biol (Mosk); 2005; 39(3):413-9. PubMed ID: 15981571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast genome evolution--the origin of the species.
    Scannell DR; Butler G; Wolfe KH
    Yeast; 2007 Nov; 24(11):929-42. PubMed ID: 17621376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular evolution of minisatellites in hemiascomycetous yeasts.
    Richard GF; Dujon B
    Mol Biol Evol; 2006 Jan; 23(1):189-202. PubMed ID: 16177231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
    Cai L; Rensing C; Li X; Wang G
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of the novel Sdic gene cluster in Drosophila melanogaster.
    Ponce R; Hartl DL
    Gene; 2006 Jul; 376(2):174-83. PubMed ID: 16765537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes.
    Goepfert S; Vidoudez C; Tellgren-Roth C; Delessert S; Hiltunen JK; Poirier Y
    Plant J; 2008 Dec; 56(5):728-42. PubMed ID: 18657232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of paralogous genes: Reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus.
    Tsuru T; Kawai M; Mizutani-Ui Y; Uchiyama I; Kobayashi I
    Mol Biol Evol; 2006 Jun; 23(6):1269-85. PubMed ID: 16601000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An evolutionary scenario for one of the largest yeast gene families.
    Despons L; Wirth B; Louis VL; Potier S; Souciet JL
    Trends Genet; 2006 Jan; 22(1):10-5. PubMed ID: 16269202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15,000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae.
    Tian GL; Macadre C; Kruszewska A; Szczesniak B; Ragnini A; Grisanti P; Rinaldi T; Palleschi C; Frontali L; Slonimski PP
    J Mol Biol; 1991 Apr; 218(4):735-46. PubMed ID: 1850804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of amidase- homologous AMI1 genes of bottom-fermenting yeast.
    Yoshida S; Hashimoto K; Tanaka-Kanai K; Yoshimoto H; Kobayashi O
    Yeast; 2007 Dec; 24(12):1075-84. PubMed ID: 17924455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy constraints on the evolution of gene expression.
    Wagner A
    Mol Biol Evol; 2005 Jun; 22(6):1365-74. PubMed ID: 15758206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of mutational dynamics in genome shrinkage.
    van Hoek MJ; Hogeweg P
    Mol Biol Evol; 2007 Nov; 24(11):2485-94. PubMed ID: 17768305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.