BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15450416)

  • 1. Missense mutations in cancer suppressor gene TP53 are colocalized with exonic splicing enhancers (ESEs).
    Gorlov IP; Gorlova OY; Frazier ML; Amos CI
    Mutat Res; 2004 Oct; 554(1-2):175-83. PubMed ID: 15450416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements.
    Kouidou S; Malousi A; Maglaveras N
    Mol Carcinog; 2009 Oct; 48(10):895-902. PubMed ID: 19367569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1.
    Zatkova A; Messiaen L; Vandenbroucke I; Wieser R; Fonatsch C; Krainer AR; Wimmer K
    Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary conservation analysis increases the colocalization of predicted exonic splicing enhancers in the BRCA1 gene with missense sequence changes and in-frame deletions, but not polymorphisms.
    Pettigrew C; Wayte N; Lovelock PK; Tavtigian SV; Chenevix-Trench G; Spurdle AB; Brown MA
    Breast Cancer Res; 2005; 7(6):R929-39. PubMed ID: 16280041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASA E382K disrupts a potential exonic splicing enhancer and causes exon skipping, but missense mutations in ASA are not associated with ESEs.
    Shotelersuk V; Desudchit T; Tongkobpetch S
    Int J Mol Med; 2004 Oct; 14(4):683-9. PubMed ID: 15375602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of missense/nonsense mutations in exonic splicing enhancer sequences from cancer-related human genes.
    Jin P; Cai R; Zhou X; Li-Ling J; Ma F
    Mutat Res; 2012 Dec; 740(1-2):6-12. PubMed ID: 23123687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene.
    Aretz S; Uhlhaas S; Sun Y; Pagenstecher C; Mangold E; Caspari R; Möslein G; Schulmann K; Propping P; Friedl W
    Hum Mutat; 2004 Nov; 24(5):370-80. PubMed ID: 15459959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colocalisation of predicted exonic splicing enhancers in BRCA2 with reported sequence variants.
    Pettigrew CA; Wayte N; Wronski A; Lovelock PK; Spurdle AB; Brown MA
    Breast Cancer Res Treat; 2008 Jul; 110(2):227-34. PubMed ID: 17899372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive identification of exonic splicing enhancers in human genes.
    Fairbrother WG; Yeh RF; Sharp PA; Burge CB
    Science; 2002 Aug; 297(5583):1007-13. PubMed ID: 12114529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.
    Liu HX; Cartegni L; Zhang MQ; Krainer AR
    Nat Genet; 2001 Jan; 27(1):55-8. PubMed ID: 11137998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of disease-associated HRPT2 mutations on splicing.
    Hahn MA; McDonnell J; Marsh DJ
    J Endocrinol; 2009 Jun; 201(3):387-96. PubMed ID: 19332451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exon inclusion is dependent on predictable exonic splicing enhancers.
    Zhang XH; Kangsamaksin T; Chao MS; Banerjee JK; Chasin LA
    Mol Cell Biol; 2005 Aug; 25(16):7323-32. PubMed ID: 16055740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a splicing enhancer in MLH1 using COMPARE, a new assay for determination of relative RNA splicing efficiencies.
    Xu DQ; Mattox W
    Hum Mol Genet; 2006 Jan; 15(2):329-36. PubMed ID: 16357104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the oncogenicity of missense mutations reported in the International Agency for Cancer Research (IARC) mutation database on p53.
    Gorlov IP; Gorlova OY; Amos CI
    Hum Mutat; 2005 Nov; 26(5):446-54. PubMed ID: 16173033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missense mutations in hMLH1 and hMSH2 are associated with exonic splicing enhancers.
    Gorlov IP; Gorlova OY; Frazier ML; Amos CI
    Am J Hum Genet; 2003 Nov; 73(5):1157-61. PubMed ID: 14526391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract.
    Habara Y; Doshita M; Hirozawa S; Yokono Y; Yagi M; Takeshima Y; Matsuo M
    J Biochem; 2008 Mar; 143(3):303-10. PubMed ID: 18039686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers.
    Smith PJ; Zhang C; Wang J; Chew SL; Zhang MQ; Krainer AR
    Hum Mol Genet; 2006 Aug; 15(16):2490-508. PubMed ID: 16825284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silent mutations in the gene encoding the p53 protein are preferentially located in conserved amino acid positions and splicing enhancers.
    Lamolle G; Marin M; Alvarez-Valin F
    Mutat Res; 2006 Aug; 600(1-2):102-12. PubMed ID: 16650445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Listening to silence and understanding nonsense: exonic mutations that affect splicing.
    Cartegni L; Chew SL; Krainer AR
    Nat Rev Genet; 2002 Apr; 3(4):285-98. PubMed ID: 11967553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.