BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15450447)

  • 1. Study of influence on the surface energy heterogeneity of multiwalled carbon nanotubes after the adsorption of poly(acrylic acid).
    Hou Q; Lu X; Liu X; Hu B; Shen J
    J Colloid Interface Sci; 2004 Oct; 278(2):299-303. PubMed ID: 15450447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in surface energy heterogeneity of graphite due to adsorption of polyoxyethylene sorbitan monooleate.
    Hou Q; Lu X; Liu X; Hu B; Yuan J; Shen J
    J Colloid Interface Sci; 2004 Dec; 280(1):98-101. PubMed ID: 15476779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new integrated method for characterizing surface energy heterogeneity from a single adsorption isotherm.
    Liu X; Lu X; Hou Q; Lu Z; Yang K; Wang R; Xu S
    J Phys Chem B; 2005 Aug; 109(33):15828-34. PubMed ID: 16853011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension.
    Liufu S; Xiao H; Li Y
    J Colloid Interface Sci; 2005 Jan; 281(1):155-63. PubMed ID: 15567391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification.
    Li Z; Pan Z; Dai S
    J Colloid Interface Sci; 2004 Sep; 277(1):35-42. PubMed ID: 15276035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes.
    Zhang M; Huang J; Yu P; Chen X
    Talanta; 2010 Apr; 81(1-2):162-6. PubMed ID: 20188903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Structural and Surface Properties of Activated Carbon Fibers.
    Li Z; Kruk M; Jaroniec M; Ryu SK
    J Colloid Interface Sci; 1998 Aug; 204(1):151-6. PubMed ID: 9665778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes.
    Chiang YC; Wu PY
    J Hazard Mater; 2010 Jun; 178(1-3):729-38. PubMed ID: 20185236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chromatographic estimate of the degree of heterogeneity of RPLC packing materials. 1. Non-endcapped polymeric C30-bonded stationary phase.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 Jan; 1103(1):43-56. PubMed ID: 16337638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some remarks on the calculation of the pore size distribution function of activated carbons.
    Gauden PA; Terzyk AP; Kowalczyk P
    J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites.
    Díaz E; Ordóñez S; Vega A
    J Colloid Interface Sci; 2007 Jan; 305(1):7-16. PubMed ID: 17046777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of activated carbon surface heterogeneity by argon and nitrogen low-pressure quasi-equilibrium volumetry.
    Garnier C; Gorner T; Razafitianamaharavo A; Villiéras F
    Langmuir; 2005 Mar; 21(7):2838-46. PubMed ID: 15779956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of Surface Energies in Reversed-Phase Perfusive Packings.
    Geng A; Loh KC
    J Colloid Interface Sci; 2001 Jul; 239(2):447-457. PubMed ID: 11427010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity analysis of single-walled carbon nanotubes from the adsorption equilibria of nitrogen and benzene.
    Shim WG; Kang HC; Kim C; Lee JW; Kim SC; Lee CJ; Moon H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3583-8. PubMed ID: 17252816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.
    Khang D; Kim SY; Liu-Snyder P; Palmore GT; Durbin SM; Webster TJ
    Biomaterials; 2007 Nov; 28(32):4756-68. PubMed ID: 17706277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Chemical Studies on the Competitive Adsorption of Poly(acrylic acid) and Poly(vinyl alcohol) onto Alumina.
    Santhiya D; Subramanian S; Natarajan KA; Malghan SG
    J Colloid Interface Sci; 1999 Aug; 216(1):143-153. PubMed ID: 10395772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen adsorption on functionalized nanoporous activated carbons.
    Zhao XB; Xiao B; Fletcher AJ; Thomas KM
    J Phys Chem B; 2005 May; 109(18):8880-8. PubMed ID: 16852056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic adsorption energy distributions of rough surfaces: a computational study.
    Panczyk T; Warzocha TP; Szabelski P; Rudzinski W
    Langmuir; 2008 Aug; 24(16):8719-25. PubMed ID: 18590294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes.
    Saint-Aubin K; Poulin P; Saadaoui H; Maugey M; Zakri C
    Langmuir; 2009 Nov; 25(22):13206-11. PubMed ID: 19722550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.