These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15450652)

  • 1. Nanofabrication of cylindrical STEM specimen of InGaAs/GaAs quantum dots for 3D-STEM observation.
    Ozasa K; Aoyagi Y; Iwaki M; Hara M; Maeda M
    Ultramicroscopy; 2004 Nov; 101(2-4):55-61. PubMed ID: 15450652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the growth of InAs/GaAs quantum dots grown on a strained GaAs layer.
    Ahmad I; Avrutin V; Morkoç H; Moore JC; Baski AA
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2889-93. PubMed ID: 17685312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching.
    Tamura Y; Kaizu T; Kiba T; Igarashi M; Tsukamoto R; Higo A; Hu W; Thomas C; Fauzi ME; Hoshii T; Yamashita I; Okada Y; Murayama A; Samukawa S
    Nanotechnology; 2013 Jul; 24(28):285301. PubMed ID: 23787817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser.
    Djie HS; Ooi BS; Fang XM; Wu Y; Fastenau JM; Liu WK; Hopkinson M
    Opt Lett; 2007 Jan; 32(1):44-6. PubMed ID: 17167578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface gallium termination on the formation and emission energy of an InGaAs wetting layer during the growth of InGaAs quantum dots by droplet epitaxy.
    Fricker D; Atkinson P; Jin X; Lepsa M; Zeng Z; Kovács A; Kibkalo L; Dunin-Borkowski RE; Kardynał BE
    Nanotechnology; 2023 Jan; 34(14):. PubMed ID: 36595322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes.
    Li F; Mi Z; Vicknesh S
    Opt Lett; 2009 Oct; 34(19):2915-7. PubMed ID: 19794766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-controlled InGaAs quantum dots with tunable emission energy.
    Felici M; Gallo P; Mohan A; Dwir B; Rudra A; Kapon E
    Small; 2009 Apr; 5(8):938-43. PubMed ID: 19235797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling of hole arrays with InAs quantum dots.
    Lee JY; Noordhoek MJ; Smereka P; McKay H; Millunchick JM
    Nanotechnology; 2009 Jul; 20(28):285305. PubMed ID: 19546494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber.
    Tsukamoto S; Honma T; Bell GR; Ishii A; Arakawa Y
    Small; 2006 Mar; 2(3):386-9. PubMed ID: 17193056
    [No Abstract]   [Full Text] [Related]  

  • 10. Strong extinction of a far-field laser beam by a single quantum dot.
    Vamivakas AN; Atatüre M; Dreiser J; Yilmaz ST; Badolato A; Swan AK; Goldberg BB; Imamoglu A; Unlü MS
    Nano Lett; 2007 Sep; 7(9):2892-6. PubMed ID: 17691853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage-free top-down processes for fabricating two-dimensional arrays of 7 nm GaAs nanodiscs using bio-templates and neutral beam etching.
    Wang XY; Huang CH; Tsukamoto R; Mortemousque PA; Itoh KM; Ohno Y; Samukawa S
    Nanotechnology; 2011 Sep; 22(36):365301. PubMed ID: 21836326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofabrication of gate-defined GaAs/AlGaAs lateral quantum dots.
    Bureau-Oxton C; Camirand Lemyre J; Pioro-Ladrière M
    J Vis Exp; 2013 Nov; (81):e50581. PubMed ID: 24300661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
    Verma VB; Stevens MJ; Silverman KL; Dias NL; Garg A; Coleman JJ; Mirin RP
    Opt Express; 2011 Feb; 19(5):4182-7. PubMed ID: 21369247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near infrared broadband emission of In0.35Ga0.65As quantum dots on high index GaAs surfaces.
    Wu J; Wang ZM; Dorogan VG; Li S; Mazur YI; Salamo GJ
    Nanoscale; 2011 Apr; 3(4):1485-8. PubMed ID: 21384043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on controllability of quantum state energy in an InGaAs/GaAs quantum dot buried in InGaAs.
    Mukai K; Nakashima K
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3705-9. PubMed ID: 17256319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First observation of In(x)Ga(1-x)As quantum dots in GaP by spherical-aberration-corrected HRTEM in comparison with ADF-STEM and conventional HRTEM.
    Tanaka N; Yamasaki J; Fuchi S; Takeda Y
    Microsc Microanal; 2004 Feb; 10(1):139-45. PubMed ID: 15306078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires.
    Fontcuberta i Morral A; Spirkoska D; Arbiol J; Heigoldt M; Ramon Morante J; Abstreiter G
    Small; 2008 Jul; 4(7):899-903. PubMed ID: 18504720
    [No Abstract]   [Full Text] [Related]  

  • 18. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap.
    Zhang ZY; Jiang Q; Luxmoore IJ; Hogg RA
    Nanotechnology; 2009 Feb; 20(5):055204. PubMed ID: 19417341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers.
    Li F; Mi Z
    Opt Express; 2009 Oct; 17(22):19933-9. PubMed ID: 19997217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a longitudinal magnetic field on spin injection and detection in InAs/GaAs quantum dot structures.
    Beyer J; Wang PH; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    J Phys Condens Matter; 2012 Apr; 24(14):145304. PubMed ID: 22417853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.