BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15450744)

  • 1. Hydrophobic peptide tags as tools in bioseparation.
    Fexby S; Bülow L
    Trends Biotechnol; 2004 Oct; 22(10):511-6. PubMed ID: 15450744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of polystyrene-binding peptides (PS-tags) for site-specific immobilization of proteins.
    Kumada Y; Kuroki D; Yasui H; Ohse T; Kishimoto M
    J Biosci Bioeng; 2010 Jun; 109(6):583-7. PubMed ID: 20471598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipurpose peptide tags for protein isolation.
    Becker K; Van Alstine J; Bülow L
    J Chromatogr A; 2008 Aug; 1202(1):40-6. PubMed ID: 18635190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective protein-peptide interactions at surfaces.
    Wang W; Woodbury NW
    Acta Biomater; 2014 Feb; 10(2):761-8. PubMed ID: 24184177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of accessible surface of residues in proteins.
    Lins L; Thomas A; Brasseur R
    Protein Sci; 2003 Jul; 12(7):1406-17. PubMed ID: 12824487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation by hydrophobic interaction chromatography and structural determination by mass spectrometry of mannosylated glycoforms of a recombinant transferrin-exendin-4 fusion protein from yeast.
    Zolodz MD; Herberg JT; Narepekha HE; Raleigh E; Farber MR; Dufield RL; Boyle DM
    J Chromatogr A; 2010 Jan; 1217(2):225-34. PubMed ID: 19896672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering of protein-peptide fusions for control of protein partitioning in thermoseparating aqueous two-phase systems.
    Berggren K; Veide A; Nygren PA; Tjerneld F
    Biotechnol Bioeng; 1999 Jan; 62(2):135-44. PubMed ID: 10099522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The surface exposed amino acid residues of monomeric proteins determine the partitioning in aqueous two-phase systems.
    Berggren K; Wolf A; Asenjo JA; Andrews BA; Tjerneld F
    Biochim Biophys Acta; 2002 Apr; 1596(2):253-68. PubMed ID: 12007607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining intrinsic hydrophobicity of amino acids' side chains in random coil conformation. Reversed-phase liquid chromatography of designed synthetic peptides vs. random peptide data sets.
    Shamshurin D; Spicer V; Krokhin OV
    J Chromatogr A; 2011 Sep; 1218(37):6348-55. PubMed ID: 21798546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics.
    Horinek D; Serr A; Bonthuis DJ; Boström M; Kunz W; Netz RR
    Langmuir; 2008 Feb; 24(4):1271-83. PubMed ID: 18220430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnology applications of amino acids in protein purification and formulations.
    Arakawa T; Tsumoto K; Kita Y; Chang B; Ejima D
    Amino Acids; 2007 Nov; 33(4):587-605. PubMed ID: 17357829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.
    Cui D; Ou S; Patel S
    Proteins; 2014 Dec; 82(12):3312-26. PubMed ID: 25204743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards identifying preferred interaction partners of fluorinated amino acids within the hydrophobic environment of a dimeric coiled coil peptide.
    Vagt T; Nyakatura E; Salwiczek M; Jäckel C; Koksch B
    Org Biomol Chem; 2010 Mar; 8(6):1382-6. PubMed ID: 20204211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural basis of peptide-protein binding strategies.
    London N; Movshovitz-Attias D; Schueler-Furman O
    Structure; 2010 Feb; 18(2):188-99. PubMed ID: 20159464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of retention times of proteins in hydrophobic interaction chromatography using only their amino acid composition.
    Salgado JC; Rapaport I; Asenjo JA
    J Chromatogr A; 2005 Dec; 1098(1-2):44-54. PubMed ID: 16314160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lanthanide-binding tags as luminescent probes for studying protein interactions.
    Sculimbrene BR; Imperiali B
    J Am Chem Soc; 2006 Jun; 128(22):7346-52. PubMed ID: 16734490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid hydrophobicity and accessible surface area.
    Moret MA; Zebende GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011920. PubMed ID: 17358197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal protein purification--expanding the repertoire of GST fusion systems.
    Viljanen J; Larsson J; Broo KS
    Protein Expr Purif; 2008 Jan; 57(1):17-26. PubMed ID: 17964806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the behaviour of proteins in hydrophobic interaction chromatography. 2. Using a statistical description of their surface amino acid distribution.
    Salgado JC; Rapaport I; Asenjo JA
    J Chromatogr A; 2006 Feb; 1107(1-2):120-9. PubMed ID: 16384574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.