BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15451515)

  • 1. The development of the embryonic outflow tract provides novel insights into cardiac differentiation and remodeling.
    Sugishita Y; Watanabe M; Fisher SA
    Trends Cardiovasc Med; 2004 Aug; 14(6):235-41. PubMed ID: 15451515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fas ligand gene transfer to the embryonic heart induces programmed cell death and outflow tract defects.
    Sallee D; Qiu Y; Liu J; Watanabe M; Fisher SA
    Dev Biol; 2004 Mar; 267(2):309-19. PubMed ID: 15013796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of myocardial hypoxia in the remodeling of the embryonic avian cardiac outflow tract.
    Sugishita Y; Watanabe M; Fisher SA
    Dev Biol; 2004 Mar; 267(2):294-308. PubMed ID: 15013795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract.
    Sugishita Y; Leifer DW; Agani F; Watanabe M; Fisher SA
    Dev Biol; 2004 Sep; 273(2):285-96. PubMed ID: 15328013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-inducible transcription factor-1alpha triggers an autocrine survival pathway during embryonic cardiac outflow tract remodeling.
    Liu H; Fisher SA
    Circ Res; 2008 Jun; 102(11):1331-9. PubMed ID: 18467628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptosis is required for the proper formation of the ventriculo-arterial connections.
    Watanabe M; Jafri A; Fisher SA
    Dev Biol; 2001 Dec; 240(1):274-88. PubMed ID: 11784063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death.
    Watanabe M; Choudhry A; Berlan M; Singal A; Siwik E; Mohr S; Fisher SA
    Development; 1998 Oct; 125(19):3809-20. PubMed ID: 9729489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developing embryonic cardiac outflow tract is highly sensitive to oxidant stress.
    Fisher SA
    Dev Dyn; 2007 Dec; 236(12):3496-502. PubMed ID: 17994543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development.
    Hu J; Shi Y; Xia M; Liu Z; Zhang R; Luo H; Zhang T; Yang Z; Yuan B
    Dev Biol; 2018 Jun; 438(2):124-137. PubMed ID: 29654745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development.
    Goddeeris MM; Schwartz R; Klingensmith J; Meyers EN
    Development; 2007 Apr; 134(8):1593-604. PubMed ID: 17344228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of apoptosis in the developing avian outflow tract myocardium.
    Rothenberg F; Hitomi M; Fisher SA; Watanabe M
    Dev Dyn; 2002 Apr; 223(4):469-82. PubMed ID: 11921336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract.
    Xu H; Morishima M; Wylie JN; Schwartz RJ; Bruneau BG; Lindsay EA; Baldini A
    Development; 2004 Jul; 131(13):3217-27. PubMed ID: 15175244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis in the developing mouse heart.
    Barbosky L; Lawrence DK; Karunamuni G; Wikenheiser JC; Doughman YQ; Visconti RP; Burch JB; Watanabe M
    Dev Dyn; 2006 Sep; 235(9):2592-602. PubMed ID: 16881058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardialization of the cardiac outflow tract.
    van den Hoff MJ; Moorman AF; Ruijter JM; Lamers WH; Bennington RW; Markwald RR; Wessels A
    Dev Biol; 1999 Aug; 212(2):477-90. PubMed ID: 10433836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial volume and organization are changed by failure of addition of secondary heart field myocardium to the cardiac outflow tract.
    Yelbuz TM; Waldo KL; Zhang X; Zdanowicz M; Parker J; Creazzo TL; Johnson GA; Kirby ML
    Dev Dyn; 2003 Oct; 228(2):152-60. PubMed ID: 14517987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tbx1, subpulmonary myocardium and conotruncal congenital heart defects.
    Parisot P; Mesbah K; Théveniau-Ruissy M; Kelly RG
    Birth Defects Res A Clin Mol Teratol; 2011 Jun; 91(6):477-84. PubMed ID: 21591244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries.
    Bajolle F; Zaffran S; Kelly RG; Hadchouel J; Bonnet D; Brown NA; Buckingham ME
    Circ Res; 2006 Feb; 98(3):421-8. PubMed ID: 16397144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential levels of tissue hypoxia in the developing chicken heart.
    Wikenheiser J; Doughman YQ; Fisher SA; Watanabe M
    Dev Dyn; 2006 Jan; 235(1):115-23. PubMed ID: 16028272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LRP2 controls sonic hedgehog-dependent differentiation of cardiac progenitor cells during outflow tract formation.
    Christ A; Marczenke M; Willnow TE
    Hum Mol Genet; 2020 Nov; 29(19):3183-3196. PubMed ID: 32901292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The outflow tract of the heart is recruited from a novel heart-forming field.
    Mjaatvedt CH; Nakaoka T; Moreno-Rodriguez R; Norris RA; Kern MJ; Eisenberg CA; Turner D; Markwald RR
    Dev Biol; 2001 Oct; 238(1):97-109. PubMed ID: 11783996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.