BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 15451670)

  • 1. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity.
    Reid TS; Terry KL; Casey PJ; Beese LS
    J Mol Biol; 2004 Oct; 343(2):417-33. PubMed ID: 15451670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
    Terry KL; Casey PJ; Beese LS
    Biochemistry; 2006 Aug; 45(32):9746-55. PubMed ID: 16893176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.
    Gangopadhyay SA; Losito EL; Hougland JL
    Biochemistry; 2014 Jan; 53(2):434-46. PubMed ID: 24344934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.
    Long SB; Casey PJ; Beese LS
    Biochemistry; 1998 Jul; 37(27):9612-8. PubMed ID: 9657673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity.
    Hartman HL; Hicks KA; Fierke CA
    Biochemistry; 2005 Nov; 44(46):15314-24. PubMed ID: 16285735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective modification of CaaX peptides with ortho-substituted anilinogeranyl lipids by protein farnesyl transferase: competitive substrates and potent inhibitors from a library of farnesyl diphosphate analogues.
    Troutman JM; Subramanian T; Andres DA; Spielmann HP
    Biochemistry; 2007 Oct; 46(40):11310-21. PubMed ID: 17854205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction path of protein farnesyltransferase at atomic resolution.
    Long SB; Casey PJ; Beese LS
    Nature; 2002 Oct; 419(6907):645-50. PubMed ID: 12374986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid residues that define both the isoprenoid and CAAX preferences of the Saccharomyces cerevisiae protein farnesyltransferase. Creating the perfect farnesyltransferase.
    Caplin BE; Ohya Y; Marshall MS
    J Biol Chem; 1998 Apr; 273(16):9472-9. PubMed ID: 9545274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic evidence for in vivo cross-specificity of the CaaX-box protein prenyltransferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae.
    Trueblood CE; Ohya Y; Rine J
    Mol Cell Biol; 1993 Jul; 13(7):4260-75. PubMed ID: 8321228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Farnesylation and proteolysis are sequential, but distinct steps in the CaaX box modification pathway.
    Farh L; Mitchell DA; Deschenes RJ
    Arch Biochem Biophys; 1995 Apr; 318(1):113-21. PubMed ID: 7726551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in the development of farnesyltransferase inhibitors: substrate recognition by protein farnesyltransferase.
    Yang W; Del Villar K; Urano J; Mitsuzawa H; Tamanoi F
    J Cell Biochem Suppl; 1997; 27():12-9. PubMed ID: 9591188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of non-peptide Ras CAAX mimetics as potent farnesyltransferase inhibitors.
    Qian Y; Vogt A; Sebti SM; Hamilton AD
    J Med Chem; 1996 Jan; 39(1):217-23. PubMed ID: 8568811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the carboxyterminal residue in peptide binding to protein farnesyltransferase and protein geranylgeranyltransferase.
    Roskoski R; Ritchie P
    Arch Biochem Biophys; 1998 Aug; 356(2):167-76. PubMed ID: 9705207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence dependence of protein isoprenylation.
    Moores SL; Schaber MD; Mosser SD; Rands E; O'Hara MB; Garsky VM; Marshall MS; Pompliano DL; Gibbs JB
    J Biol Chem; 1991 Aug; 266(22):14603-10. PubMed ID: 1860864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase.
    Turek-Etienne TC; Strickland CL; Distefano MD
    Biochemistry; 2003 Apr; 42(13):3716-24. PubMed ID: 12667062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and characterization of piperazinedione-based dual protein inhibitors for both farnesyltransferase and geranylgeranyltransferase-I.
    Qiao Y; Gao J; Qiu Y; Wu L; Guo F; Lo KK; Li D
    Eur J Med Chem; 2011 Jun; 46(6):2264-73. PubMed ID: 21440964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Module assembly for protein-surface recognition: geranylgeranyltransferase I bivalent inhibitors for simultaneous targeting of interior and exterior protein surfaces.
    Machida S; Usuba K; Blaskovich MA; Yano A; Harada K; Sebti SM; Kato N; Ohkanda J
    Chemistry; 2008; 14(5):1392-401. PubMed ID: 18200641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures.
    Long SB; Casey PJ; Beese LS
    Structure; 2000 Feb; 8(2):209-22. PubMed ID: 10673434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upstream polybasic region in peptides enhances dual specificity for prenylation by both farnesyltransferase and geranylgeranyltransferase type I.
    Hicks KA; Hartman HL; Fierke CA
    Biochemistry; 2005 Nov; 44(46):15325-33. PubMed ID: 16285736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein farnesyltransferase and geranylgeranyltransferase-I by different binding modes.
    Reid TS; Long SB; Beese LS
    Biochemistry; 2004 Jul; 43(28):9000-8. PubMed ID: 15248757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.