These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15452119)

  • 1. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics.
    Yang W; Moore IF; Koteva KP; Bareich DC; Hughes DW; Wright GD
    J Biol Chem; 2004 Dec; 279(50):52346-52. PubMed ID: 15452119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase.
    Volkers G; Palm GJ; Weiss MS; Wright GD; Hinrichs W
    FEBS Lett; 2011 Apr; 585(7):1061-6. PubMed ID: 21402075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tigecycline is modified by the flavin-dependent monooxygenase TetX.
    Moore IF; Hughes DW; Wright GD
    Biochemistry; 2005 Sep; 44(35):11829-35. PubMed ID: 16128584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of tetracycline by TetX and its subsequent degradation in a heterologous host.
    Ghosh S; LaPara TM; Sadowsky MJ
    FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26038239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression of the tetracycline resistance gene tetX to enhance degradability and safety in doxycycline degradation.
    Wen X; Huang J; Cao J; Xu J; Mi J; Wang Y; Ma B; Zou Y; Liao X; Liang JB; Wu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110214. PubMed ID: 31968275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX.
    Volkers G; Damas JM; Palm GJ; Panjikar S; Soares CM; Hinrichs W
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1758-67. PubMed ID: 23999299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase.
    Speer BS; Bedzyk L; Salyers AA
    J Bacteriol; 1991 Jan; 173(1):176-83. PubMed ID: 1846135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation.
    Park BH; Hendricks M; Malamy MH; Tally FP; Levy SB
    Antimicrob Agents Chemother; 1987 Nov; 31(11):1739-43. PubMed ID: 3324960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetracycline-modifying enzyme SmTetX from Stenotrophomonas maltophilia.
    Malý M; Kolenko P; Stránský J; Švecová L; Dušková J; Koval' T; Skálová T; Trundová M; Adámková K; Černý J; Božíková P; Dohnálek J
    Acta Crystallogr F Struct Biol Commun; 2023 Jul; 79(Pt 7):180-192. PubMed ID: 37405486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Levels of Intrinsic Tetracycline Resistance in Mycobacterium abscessus Are Conferred by a Tetracycline-Modifying Monooxygenase.
    Rudra P; Hurst-Hess K; Lappierre P; Ghosh P
    Antimicrob Agents Chemother; 2018 Jun; 62(6):. PubMed ID: 29632012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations.
    Bartha NA; Sóki J; Urbán E; Nagy E
    Int J Antimicrob Agents; 2011 Dec; 38(6):522-5. PubMed ID: 22014885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline.
    Cheng Q; Cheung Y; Liu C; Xiao Q; Sun B; Zhou J; Chan EWC; Zhang R; Chen S
    BMC Biol; 2021 Dec; 19(1):262. PubMed ID: 34895224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes.
    Forsberg KJ; Patel S; Wencewicz TA; Dantas G
    Chem Biol; 2015 Jul; 22(7):888-97. PubMed ID: 26097034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein.
    Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV
    mBio; 2015 May; 6(3):e00519-15. PubMed ID: 25944861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids.
    Guiney DG; Hasegawa P; Davis CE
    Plasmid; 1984 May; 11(3):248-52. PubMed ID: 6379711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134.
    Louie TM; Webster CM; Xun L
    J Bacteriol; 2002 Jul; 184(13):3492-500. PubMed ID: 12057943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Rifampicin Inactivation in Nocardia farcinica.
    Abdelwahab H; Martin Del Campo JS; Dai Y; Adly C; El-Sohaimy S; Sobrado P
    PLoS One; 2016; 11(10):e0162578. PubMed ID: 27706151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Whole-Cell Biodevices for Targeted Degradation of Antibiotics.
    Xia PF; Li Q; Tan LR; Liu MM; Jin YS; Wang SG
    Sci Rep; 2018 Feb; 8(1):2906. PubMed ID: 29440690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of a gene from Bacteroides fragilis involved in metronidazole resistance in Escherichia coli.
    Wehnert GU; Abratt VR; Woods DR
    Plasmid; 1992 May; 27(3):242-5. PubMed ID: 1513881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.