BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1545262)

  • 21. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans.
    Sanai N; Eschbacher J; Hattendorf G; Coons SW; Preul MC; Smith KA; Nakaji P; Spetzler RF
    Neurosurgery; 2011 Jun; 68(2 Suppl Operative):282-90; discussion 290. PubMed ID: 21336204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone.
    Richter JCO; Haj-Hosseini N; Hallbeck M; Wårdell K
    Photodiagnosis Photodyn Ther; 2017 Jun; 18():185-192. PubMed ID: 28223144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of microsurgical and carbon dioxide and argon laser resection on recurrence of the intracerebral 9L rat gliosarcoma.
    Edwards MS; Boggan JE; Bolger CA; Davis RL
    Neurosurgery; 1984 Jan; 14(1):52-6. PubMed ID: 6420723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraoperative tumor segmentation and volume measurement in MRI-guided glioma surgery for tumor resection rate control.
    Hata N; Muragaki Y; Inomata T; Maruyama T; Iseki H; Hori T; Dohi T
    Acad Radiol; 2005 Jan; 12(1):116-22. PubMed ID: 15691732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin.
    Kremer P; Fardanesh M; Ding R; Pritsch M; Zoubaa S; Frei E
    Neurosurgery; 2009 Mar; 64(3 Suppl):ons53-60; discussion ons60-1. PubMed ID: 19240573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of aluminum phthalocyanine disulfonate in an oral squamous cell carcinoma model. In vivo fluorescence imaging compared with ex vivo analytical methods.
    Witjes MJ; Mank AJ; Speelman OC; Posthumus R; Nooren CA; Nauta JM; Roodenburg JL; Star WM
    Photochem Photobiol; 1997 Apr; 65(4):685-93. PubMed ID: 9114745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A low-field intraoperative MRI system for glioma surgery: is it worthwhile?
    Oh DS; Black PM
    Neurosurg Clin N Am; 2005 Jan; 16(1):135-41. PubMed ID: 15561533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of glioma removal by intraoperative high-field magnetic resonance imaging: an update.
    Kuhnt D; Ganslandt O; Schlaffer SM; Buchfelder M; Nimsky C
    Neurosurgery; 2011 Oct; 69(4):852-62; discussion 862-3. PubMed ID: 21623242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence and image guided resection in high grade glioma.
    Panciani PP; Fontanella M; Schatlo B; Garbossa D; Agnoletti A; Ducati A; Lanotte M
    Clin Neurol Neurosurg; 2012 Jan; 114(1):37-41. PubMed ID: 21963142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain tissue autofluorescence: an aid for intraoperative delineation of tumor resection margins.
    Bottiroli G; Croce AC; Locatelli D; Nano R; Giombelli E; Messina A; Benericetti E
    Cancer Detect Prev; 1998; 22(4):330-9. PubMed ID: 9674876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative, spectrally-resolved intraoperative fluorescence imaging.
    Valdés PA; Leblond F; Jacobs VL; Wilson BC; Paulsen KD; Roberts DW
    Sci Rep; 2012; 2():798. PubMed ID: 23152935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study.
    Eljamel S; Petersen M; Valentine R; Buist R; Goodman C; Moseley H; Eljamel S
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):356-61. PubMed ID: 24284085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Motexafin gadolinium (MGd) as a contrast agent for intraoperative MRI.
    Hirschberg H; Wu GN; Madsen SJ
    Minim Invasive Neurosurg; 2007 Dec; 50(6):318-23. PubMed ID: 18210352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates. Technical note.
    Utsuki S; Oka H; Sato S; Suzuki S; Shimizu S; Tanaka S; Fujii K
    J Neurosurg; 2006 Apr; 104(4):618-20. PubMed ID: 16619668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy.
    Yong WH; Butte PV; Pikul BK; Jo JA; Fang Q; Papaioannou T; Black K; Marcu L
    Front Biosci; 2006 May; 11():1255-63. PubMed ID: 16368511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent imaging in a glioma model in vivo.
    Nikas DC; Foley JW; Black PM
    Lasers Surg Med; 2001; 29(1):11-7. PubMed ID: 11500856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.
    Butte PV; Fang Q; Jo JA; Yong WH; Pikul BK; Black KL; Marcu L
    J Biomed Opt; 2010; 15(2):027008. PubMed ID: 20459282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor.
    Martirosyan NL; Cavalcanti DD; Eschbacher JM; Delaney PM; Scheck AC; Abdelwahab MG; Nakaji P; Spetzler RF; Preul MC
    J Neurosurg; 2011 Dec; 115(6):1131-8. PubMed ID: 21923240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo fluorescence kinetics and localisation of aluminum phthalocyanine disulphonate in an autologous tumour model.
    Witjes MJ; Speelman OC; Nikkels PG; Nooren CA; Nauta JM; van der Holt B; van Leengoed HL; Star WM; Roodenburg JL
    Br J Cancer; 1996 Mar; 73(5):573-80. PubMed ID: 8605089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.