BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15453573)

  • 1. Effect of spices and organic acids on the growth of Clostridium perfringens during cooling of cooked ground beef.
    Sabah JR; Juneja VK; Fung DY
    J Food Prot; 2004 Sep; 67(9):1840-7. PubMed ID: 15453573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure.
    Sabah JR; Thippareddi H; Marsden JL; Fung DY
    J Food Prot; 2003 Aug; 66(8):1408-12. PubMed ID: 12929827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the microbial quality of Tajik sambusa and control of Clostridium perfringens germination and outgrowth by buffered sodium citrate and potassium lactate.
    Yarbaeva SN; Velugoti PR; Thippareddi H; Albrecht JA
    J Food Prot; 2008 Jan; 71(1):77-82. PubMed ID: 18236666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts.
    Sánchez-Plata MX; Amézquita A; Blankenship E; Burson DE; Juneja V; Thippareddi H
    J Food Prot; 2005 Dec; 68(12):2594-605. PubMed ID: 16355831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of organic acid salts on growth of Clostridium perfringens from spore inocula during chilling of marinated ground turkey breast.
    Juneja VK; Thippareddi H
    Int J Food Microbiol; 2004 Jun; 93(2):155-63. PubMed ID: 15135954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Clostridium perfringens spores by green tea leaf extracts during cooling of cooked ground beef, chicken, and pork.
    Juneja VK; Bari ML; Inatsu Y; Kawamoto S; Friedman M
    J Food Prot; 2007 Jun; 70(6):1429-33. PubMed ID: 17612073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef.
    Zaika LL
    J Food Prot; 2003 Sep; 66(9):1599-603. PubMed ID: 14503712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth potential of Clostridium perfringens from spores in acidified beef, pork, and poultry products during chilling.
    Juneja VK; Baker DA; Thippareddi H; Snyder OP; Mohr TB
    J Food Prot; 2013 Jan; 76(1):65-71. PubMed ID: 23317858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork.
    Thippareddi H; Juneja VK; Phebus RK; Marsden JL; Kastner CL
    J Food Prot; 2003 Mar; 66(3):376-81. PubMed ID: 12636288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef.
    Li L; Valenzuela-Martinez C; Redondo M; Juneja VK; Burson DE; Thippareddi H
    J Food Sci; 2012 Nov; 77(11):M598-603. PubMed ID: 23163907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol, or oregano oil during chilling.
    Juneja VK; Thippareddi H; Friedman M
    J Food Prot; 2006 Jul; 69(7):1546-51. PubMed ID: 16865884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carvacrol, cinnamaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination and outgrowth in ground turkey during chilling.
    Juneja VK; Friedman M
    J Food Prot; 2007 Jan; 70(1):218-22. PubMed ID: 17265885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Clostridium perfringens growth by potassium lactate during an extended cooling of cooked uncured ground turkey breasts.
    Kennedy KM; Milkowski AL; Glass KA
    J Food Prot; 2013 Nov; 76(11):1972-6. PubMed ID: 24215704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth/no growth boundary of Clostridium perfringens from spores in cooked meat: A logistic analysis.
    Huang L; Li C; Hwang CA
    Int J Food Microbiol; 2018 Feb; 266():257-266. PubMed ID: 29274481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chilling rate on outgrowth of Clostridium perfringens spores in vacuum-packaged cooked beef and pork.
    Danler RJ; Boyle EA; Kastner CL; Thippareddi H; Fung DY; Phebus RK
    J Food Prot; 2003 Mar; 66(3):501-3. PubMed ID: 12636309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential for growth of Clostridium perfringens from spores in pork scrapple during cooling.
    Juneja VK; Porto-Fett AC; Gartner K; Tufft L; Luchansky JB
    Foodborne Pathog Dis; 2010 Feb; 7(2):153-7. PubMed ID: 19785539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products.
    Kalinowski RM; Tompkin RB; Bodnaruk PW; Pruett WP
    J Food Prot; 2003 Jul; 66(7):1227-32. PubMed ID: 12870757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Clostridium perfringens spore germination and outgrowth by buffered vinegar and lemon juice concentrate during chilling of ground turkey roast containing minimal ingredients.
    Valenzuela-Martinez C; Pena-Ramos A; Juneja VK; Korasapati NR; Burson DE; Thippareddi H
    J Food Prot; 2010 Mar; 73(3):470-6. PubMed ID: 20202331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of germination and outgrowth of Clostridium perfringens spores by lactic acid salts during cooling of injected turkey.
    Velugoti PR; Bohra LK; Juneja VK; Thippareddi H
    J Food Prot; 2007 Apr; 70(4):923-9. PubMed ID: 17477262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.