These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15453591)

  • 1. ComBase: a common database on microbial responses to food environments.
    Baranyi J; Tamplin ML
    J Food Prot; 2004 Sep; 67(9):1967-71. PubMed ID: 15453591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
    Koseki S
    Int J Food Microbiol; 2009 Aug; 134(1-2):75-82. PubMed ID: 19181410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [ComBase: the international database for predictive microbiology].
    Koseki S
    Shokuhin Eiseigaku Zasshi; 2006 Aug; 47(4):J247-50. PubMed ID: 16984044
    [No Abstract]   [Full Text] [Related]  

  • 4. Predictive microbiology.
    Ross T; McMeekin TA
    Int J Food Microbiol; 1994 Nov; 23(3-4):241-64. PubMed ID: 7873329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of predictive microbiology: strategic research, innovative applications and great expectations.
    McMeekin T; Bowman J; McQuestin O; Mellefont L; Ross T; Tamplin M
    Int J Food Microbiol; 2008 Nov; 128(1):2-9. PubMed ID: 18703250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "Sym'Previus" software, a tool to support decisions to the foodstuff safety.
    Leporq B; Membré JM; Dervin C; Buche P; Guyonnet JP
    Int J Food Microbiol; 2005 Apr; 100(1-3):231-7. PubMed ID: 15854708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database.
    Hiura S; Koseki S; Koyama K
    Sci Rep; 2021 May; 11(1):10613. PubMed ID: 34012066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the growth, survival and death of microorganisms in foods: the UK food micromodel approach.
    McClure PJ; Blackburn CW; Cole MB; Curtis PS; Jones JE; Legan JD; Ogden ID; Peck MW; Roberts TA; Sutherland JP
    Int J Food Microbiol; 1994 Nov; 23(3-4):265-75. PubMed ID: 7873330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of mathematical models to manage risk of holding cold food without temperature control.
    Schaffner DW
    J Food Prot; 2013 Jun; 76(6):1085-94. PubMed ID: 23726207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogen growth when implementing 'Time as a Public Health Control'.
    Tamplin ML; Ratkowsky DA
    Food Microbiol; 2021 Jun; 96():103718. PubMed ID: 33494895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive microbiology: providing a knowledge-based framework for change management.
    McMeekin TA; Ross T
    Int J Food Microbiol; 2002 Sep; 78(1-2):133-53. PubMed ID: 12222630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive food microbiology for the meat industry: a review.
    McDonald K; Sun DW
    Int J Food Microbiol; 1999 Nov; 52(1-2):1-27. PubMed ID: 10573388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts and tools for predictive modeling of microbial dynamics.
    Bernaerts K; Dens E; Vereecken K; Geeraerd AH; Standaert AR; Devlieghere F; Debevere J; Van Impe JF
    J Food Prot; 2004 Sep; 67(9):2041-52. PubMed ID: 15453600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting and Modelling the Growth of Potentially Pathogenic Bacteria in Coalho Cheese.
    de Araújo VG; de Oliveira Arruda MD; Dantas Duarte FN; de Sousa JMB; da Costa Lima M; da Conceição ML; Schaffner DW; de Souza EL
    J Food Prot; 2017 Jul; 80(7):1172-1181. PubMed ID: 28604174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analysis of food safety information based on a combination of a relational database and a predictive modeling tool.
    Vialette M; Pinon A; Leporq B; Dervin C; Membré JM
    Risk Anal; 2005 Feb; 25(1):75-83. PubMed ID: 15787758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considering the complexity of microbial community dynamics in food safety risk assessment.
    Powell M; Schlosser W; Ebel E
    Int J Food Microbiol; 2004 Jan; 90(2):171-9. PubMed ID: 14698098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.
    Mafart P
    Int J Food Microbiol; 2005 Apr; 100(1-3):239-51. PubMed ID: 15854709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.