These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15453758)

  • 1. Control of viscoelasticity using redox reaction.
    Tsuchiya K; Orihara Y; Kondo Y; Yoshino N; Ohkubo T; Sakai H; Abe M
    J Am Chem Soc; 2004 Oct; 126(39):12282-3. PubMed ID: 15453758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for generation of spatial gradients in concentration of monomeric surfactants and micelles in microfluidic systems.
    Liu X; Graham MD; Abbott NL
    Langmuir; 2007 Sep; 23(19):9578-85. PubMed ID: 17705408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual viscoelasticity behaviour in aqueous solutions containing a photoresponsive amphiphile.
    Takahashi Y; Yamamoto Y; Hata S; Kondo Y
    J Colloid Interface Sci; 2013 Oct; 407():370-4. PubMed ID: 23838330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible condensation of DNA using a redox-active surfactant.
    Hays ME; Jewell CM; Lynn DM; Abbott NL
    Langmuir; 2007 May; 23(10):5609-14. PubMed ID: 17428073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2008 Jun; 322(2):596-604. PubMed ID: 18395738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical control of the interactions of polymers and redox-active surfactants.
    Hays ME; Abbott NL
    Langmuir; 2005 Dec; 21(25):12007-15. PubMed ID: 16316146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demulsification of Redox-Active Emulsions by Chemical Oxidation.
    Takahashi Y; Koizumi N; Kondo Y
    Langmuir; 2016 Aug; 32(30):7556-63. PubMed ID: 27402350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced reversible change of fluid viscosity.
    Sakai H; Orihara Y; Kodashima H; Matsumura A; Ohkubo T; Tsuchiya K; Abe M
    J Am Chem Soc; 2005 Oct; 127(39):13454-5. PubMed ID: 16190682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity.
    Zhao W; Hao J
    J Colloid Interface Sci; 2016 Sep; 478():303-10. PubMed ID: 27314643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils.
    Sharma SC; Shrestha RG; Shrestha LK; Aramaki K
    J Phys Chem B; 2009 Feb; 113(6):1615-22. PubMed ID: 19193166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?
    Zhao M; Zhang Y; Zou C; Dai C; Gao M; Li Y; Lv W; Jiang J; Wu Y
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28927008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system.
    Yin H; Lin Y; Huang J
    J Colloid Interface Sci; 2009 Oct; 338(1):177-83. PubMed ID: 19560154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and rheology of viscoelastic "double networks" in wormlike micelle-nanoparticle mixtures.
    Helgeson ME; Hodgdon TK; Kaler EW; Wagner NJ; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2010 Jun; 26(11):8049-60. PubMed ID: 20235525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-anomalous diffusion processes in entangled solutions of wormlike surfactant micelles.
    Shukla A; Fuchs R; Rehage H
    Langmuir; 2006 Mar; 22(7):3000-6. PubMed ID: 16548549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution.
    Dong B; Zhang J; Zheng L; Wang S; Li X; Inoue T
    J Colloid Interface Sci; 2008 Mar; 319(1):338-43. PubMed ID: 18076899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces.
    Smith TJ; Wang C; Abbott NL
    J Colloid Interface Sci; 2017 Sep; 502():122-133. PubMed ID: 28478219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micellar shape transition under dilute salt-free conditions: promotion and self-fluorescence monitoring of stimuli-responsive viscoelasticity by 1- and 2-naphthols.
    Saha SK; Jha M; Ali M; Chakraborty A; Bit G; Das SK
    J Phys Chem B; 2008 Apr; 112(15):4642-7. PubMed ID: 18358025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of self-assembling redox mediators on charge transfer at hydrophobic electrodes.
    Smith TJ; Wang C; Abbott NL
    Langmuir; 2015 Oct; 31(39):10638-48. PubMed ID: 26305703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of polyethylene oxide on the rheological properties of semidilute, wormlike micellar solutions of hexadecyltrimethylammonium chloride and sodium salicylate.
    Suksamranchit S; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Dec; 304(2):497-504. PubMed ID: 17045601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.