BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15453778)

  • 1. Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation.
    Williams LL; Webster RD
    J Am Chem Soc; 2004 Oct; 126(39):12441-50. PubMed ID: 15453778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant differences in the electrochemical behavior of the alpha-, beta-, gamma-, and delta-tocopherols (vitamin E).
    Wilson GJ; Lin CY; Webster RD
    J Phys Chem B; 2006 Jun; 110(23):11540-8. PubMed ID: 16771430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of alpha-tocopherol (vitamin E) and related chromanol model compounds into their phenoxonium ions by chemical oxidation with the nitrosonium cation.
    Lee SB; Lin CY; Gill PM; Webster RD
    J Org Chem; 2005 Dec; 70(25):10466-73. PubMed ID: 16323859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-transfer reactions between the diamagnetic cation of α-tocopherol (vitamin E) and β-carotene.
    Tan YS; Webster RD
    J Phys Chem B; 2011 Apr; 115(14):4244-50. PubMed ID: 21417292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the oxidative electrochemistry of vitamin E.
    Webster RD
    Acc Chem Res; 2007 Apr; 40(4):251-7. PubMed ID: 17269797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of low levels of water in the electrochemical oxidation of α-tocopherol (vitamin E) and other phenols in acetonitrile.
    Tan YS; Chen S; Hong WM; Kan JM; Kwek ES; Lim SY; Lim ZH; Tessensohn ME; Zhang Y; Webster RD
    Phys Chem Chem Phys; 2011 Jul; 13(28):12745-54. PubMed ID: 21670827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates.
    Ouchi A; Nagaoka S; Abe K; Mukai K
    J Phys Chem B; 2009 Oct; 113(40):13322-31. PubMed ID: 19754085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lived radical cations as model compounds for the reactive one-electron oxidation product of vitamin E.
    Peng HM; Choules BF; Yao WW; Zhang Z; Webster RD; Gill PM
    J Phys Chem B; 2008 Aug; 112(33):10367-74. PubMed ID: 18661934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies on the interaction of reduced cobalamin (vitamin B12r) with nitroprusside.
    Wolak M; Stochel G; van Eldik R
    J Am Chem Soc; 2003 Feb; 125(5):1334-51. PubMed ID: 12553836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E.
    Webster RD
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E chemistry. Studies into initial oxidation intermediates of alpha-tocopherol: disproving the involvement of 5a-C-centered "chromanol methide" radicals.
    Rosenau T; Kloser E; Gille L; Mazzini F; Netscher T
    J Org Chem; 2007 Apr; 72(9):3268-81. PubMed ID: 17391045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding interactions between water and the one- and two-electron-reduced forms of vitamin K1: applying quinone electrochemistry to determine the moisture content of non-aqueous solvents.
    Hui Y; Chng EL; Chng CY; Poh HL; Webster RD
    J Am Chem Soc; 2009 Feb; 131(4):1523-34. PubMed ID: 19132833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquinone-dependent recycling of vitamin E radicals by superoxide.
    Stoyanovsky DA; Osipov AN; Quinn PJ; Kagan VE
    Arch Biochem Biophys; 1995 Nov; 323(2):343-51. PubMed ID: 7487097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical.
    Pazos M; Andersen ML; Medina I; Skibsted LH
    J Agric Food Chem; 2007 May; 55(9):3661-6. PubMed ID: 17419638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galloylated polyphenols efficiently reduce alpha-tocopherol radicals in a phospholipid model system composed of sodium dodecyl sulfate (SDS) micelles.
    Pazos M; Torres JL; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jun; 57(11):5042-8. PubMed ID: 19422241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.
    Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W
    J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation of alpha-tocopherol and trolox by peroxynitrite.
    Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1994 Oct; 314(1):153-8. PubMed ID: 7944387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox properties of ruthenium nitrosyl porphyrin complexes with different axial ligation: structural, spectroelectrochemical (IR, UV-visible, and EPR), and theoretical studies.
    Singh P; Das AK; Sarkar B; Niemeyer M; Roncaroli F; Olabe JA; Fiedler J; Zális S; Kaim W
    Inorg Chem; 2008 Aug; 47(16):7106-13. PubMed ID: 18646846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESR/DFT study of bis-iminophosphorane cation radicals.
    Matni A; Boubekeur L; Grosshans P; Mézailles N; Bernardinelli G; Le Floch P; Geoffroy M
    Magn Reson Chem; 2007 Dec; 45(12):1011-7. PubMed ID: 18044803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and characterization of the selenocysteinyl radical: direct evidence from time-resolved UV/Vis, electron paramagnetic resonance, and Fourier transform infrared spectroscopy.
    Kolano C; Bucher G; Schade O; Grote D; Sander W
    J Org Chem; 2005 Aug; 70(17):6609-15. PubMed ID: 16095277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.