BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 154538)

  • 1. Cross-linking of the (Ca2+ + Mg2+)-ATPase protein.
    Baskin RJ; Hanna S
    J Immunol Methods; 1979; 25(1):61-4. PubMed ID: 154538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linking of the (Ca2+ + Mg2+)-ATPase protein.
    Baskin RJ; Hanna S
    Biochim Biophys Acta; 1979 Jan; 576(1):61-70. PubMed ID: 153767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linking agents induce rapid calcium release from skeletal muscle sarcoplasmic reticulum.
    Chiesi M
    Biochemistry; 1984 Aug; 23(17):3899-907. PubMed ID: 6237679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State of aggregation of the (Ca2+ + Mg2+)-ATPase studied using chemical cross-linking.
    Napier RM; East JM; Lee AG
    Biochim Biophys Acta; 1987 Oct; 903(2):374-80. PubMed ID: 2820493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the (Ca2+ + Mg2+)-ATPase proteins from normal and dystrophic chicken sarcoplasmic reticulum.
    Hanna SD; Baskin RJ
    Biochim Biophys Acta; 1978 Apr; 540(1):144-50. PubMed ID: 147712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles.
    Heilmann C; Brdiczka D; Nickel E; Pette D
    Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A freeze-fracture study of the aggregation state of Ca2+,Mg2+-ATPase of sarcoplasmic reticulum in reconstituted vesicles at low and high temperature.
    Anzai K; Usukura J; Shimizu H; Yamada E
    J Biochem; 1981 May; 89(5):1403-9. PubMed ID: 6115856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosslinking of sarcoplasmic reticulum ATPase protein with 1,5-difluoro 2,4-dinitrobenzene.
    Bailin G
    Biochim Biophys Acta; 1980 Aug; 624(2):511-21. PubMed ID: 6448077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cross-linking of rabbit skeletal muscle sarcoplasmic reticulum protein.
    Louis CF; Saunders MJ; Holroyd JA
    Biochim Biophys Acta; 1977 Jul; 493(1):78-92. PubMed ID: 141949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of sarcoplasmic reticulum from normal and denervated rat skeletal muscle.
    Palexas GN; Savage N; Isaacs H
    Biochem J; 1981 Oct; 200(1):11-5. PubMed ID: 6120692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator.
    Chiu VC; Haynes DH
    Biophys J; 1977 Apr; 18(1):3-22. PubMed ID: 15667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking experiments with the adenosine triphosphatase of sarcoplasmic reticulum.
    Hebdon GM; Cunningham LW; Green NM
    Biochem J; 1979 Apr; 179(1):135-9. PubMed ID: 157736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of calcium ion transport ATPase upon the passive calcium ion permeability of phospholipid vesicles.
    Jilka RL; Martonosi AN
    Biochim Biophys Acta; 1977 Apr; 466(1):57-67. PubMed ID: 139922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active transport of calcium ion in sarcoplasmic membranes.
    Inesi G
    Annu Rev Biophys Bioeng; 1972; 1():191-210. PubMed ID: 4346304
    [No Abstract]   [Full Text] [Related]  

  • 19. Binding of the polyflavane P13 on various pig myocardial membranes--effects on protein release and on Ca2+ and Mg2+ movements.
    Di Pietro A; Godinot C; Vial C; Gautheron DC
    Biochem Pharmacol; 1977 Oct; 26(19):1775-81. PubMed ID: 143940
    [No Abstract]   [Full Text] [Related]  

  • 20. Highly purified sarcoplasmic reticulum vesicles are devoid of Ca2+-independent ('basal') ATPase activity.
    Fernandez JL; Rosemblatt M; Hidalgo C
    Biochim Biophys Acta; 1980 Jul; 599(2):552-68. PubMed ID: 6105877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.