These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 15453814)
1. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Ali JH; Wang WB; Zevallos M; Alfano RR Technol Cancer Res Treat; 2004 Oct; 3(5):491-7. PubMed ID: 15453814 [TBL] [Abstract][Full Text] [Related]
2. Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent. Pu Y; Wang WB; Tang GC; Zeng F; Achilefu S; Vitenson JH; Sawczuk I; Peters S; Lombardo JM; Alfano RR Technol Cancer Res Treat; 2005 Aug; 4(4):429-36. PubMed ID: 16029061 [TBL] [Abstract][Full Text] [Related]
3. In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy. Chung SH; Cerussi AE; Klifa C; Baek HM; Birgul O; Gulsen G; Merritt SI; Hsiang D; Tromberg BJ Phys Med Biol; 2008 Dec; 53(23):6713-27. PubMed ID: 18997265 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Elsaesser T Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543 [TBL] [Abstract][Full Text] [Related]
5. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues. Pu Y; Wang W; Al-Rubaiee M; Gayen SK; Xu M Appl Spectrosc; 2012 Jul; 66(7):828-34. PubMed ID: 22710079 [TBL] [Abstract][Full Text] [Related]
6. In vivo investigation of progressive alterations in rat mammary gland tumors by near-infrared spectroscopy. Hirosawa N; Sakamoto Y; Katayama H; Tonooka S; Yano K Anal Biochem; 2002 Jun; 305(2):156-65. PubMed ID: 12054444 [TBL] [Abstract][Full Text] [Related]
7. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint". Abramczyk H; Brozek-Pluska B; Krzesniak M; Kopec M; Morawiec-Sztandera A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():609-23. PubMed ID: 24836126 [TBL] [Abstract][Full Text] [Related]
8. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues. Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604 [TBL] [Abstract][Full Text] [Related]
9. Spectral and temporal near-infrared imaging of ex vivo cancerous and normal human breast tissues. Alrubaiee M; Gayen SK; Alfano RR; Koutcher JA Technol Cancer Res Treat; 2005 Oct; 4(5):457-70. PubMed ID: 16173818 [TBL] [Abstract][Full Text] [Related]
10. NIR spectroscopic detection of breast cancer. Nioka S; Chance B Technol Cancer Res Treat; 2005 Oct; 4(5):497-512. PubMed ID: 16173821 [TBL] [Abstract][Full Text] [Related]
11. In vivo simultaneous measurement of urea and water in the human stratum corneum by diffuse-reflectance near-infrared spectroscopy. Egawa M Skin Res Technol; 2009 May; 15(2):195-9. PubMed ID: 19622130 [TBL] [Abstract][Full Text] [Related]
12. Deep optical imaging of tissue using the second and third near-infrared spectral windows. Sordillo LA; Pu Y; Pratavieira S; Budansky Y; Alfano RR J Biomed Opt; 2014 May; 19(5):056004. PubMed ID: 24805808 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared fiber optic spectroscopy as a novel diagnostic tool for the detection of pancreatic cancer. Kondepati VR; Zimmermann J; Keese M; Sturm J; Manegold BC; Backhaus J J Biomed Opt; 2005; 10(5):054016. PubMed ID: 16292976 [TBL] [Abstract][Full Text] [Related]
14. CH-overtone regions as diagnostic markers for near-infrared spectroscopic diagnosis of primary cancers in human pancreas and colorectal tissue. Kondepati VR; Oszinda T; Heise HM; Luig K; Mueller R; Schroeder O; Keese M; Backhaus J Anal Bioanal Chem; 2007 Mar; 387(5):1633-41. PubMed ID: 17205263 [TBL] [Abstract][Full Text] [Related]
15. Regional difference of water content in human skin studied by diffuse-reflectance near-infrared spectroscopy: consideration of measurement depth. Egawa M; Arimoto H; Hirao T; Takahashi M; Ozaki Y Appl Spectrosc; 2006 Jan; 60(1):24-8. PubMed ID: 16454907 [TBL] [Abstract][Full Text] [Related]
16. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues. Huang Z; McWilliams A; Lam S; English J; McLean DI; Lui H; Zeng H Int J Oncol; 2003 Sep; 23(3):649-55. PubMed ID: 12888900 [TBL] [Abstract][Full Text] [Related]
17. Dangling OH Vibrations of Water Molecules in Aqueous Solutions of Aprotic Polar Compounds Observed in the Near-Infrared Regime. Sagawa N; Shikata T J Phys Chem B; 2015 Jun; 119(25):8087-95. PubMed ID: 25996246 [TBL] [Abstract][Full Text] [Related]
18. Thermal effect on dispersive infrared spectroscopic imaging of prostate cancer tissue. Song CL; Ryu M; Morikawa J; Kothari A; Kazarian SG J Biophotonics; 2018 Dec; 11(12):e201800187. PubMed ID: 30003714 [TBL] [Abstract][Full Text] [Related]
19. Intrinsic near-infrared spectroscopic markers of breast tumors. Kukreti S; Cerussi A; Tromberg B; Gratton E Dis Markers; 2008; 25(6):281-90. PubMed ID: 19208946 [TBL] [Abstract][Full Text] [Related]
20. Determining water content in human nails with a portable near-infrared spectrometer. Egawa M; Fukuhara T; Takahashi M; Ozaki Y Appl Spectrosc; 2003 Apr; 57(4):473-8. PubMed ID: 14658646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]