These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 1545391)
1. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor. Tolins JP J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114 [TBL] [Abstract][Full Text] [Related]
3. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney. Scholz H; Kurtz A J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697 [TBL] [Abstract][Full Text] [Related]
4. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor. Lanzone JA; Gulmi FA; Chou SY; Mooppan UM; Kim H J Urol; 1995 Jun; 153(6):2055-9. PubMed ID: 7752393 [TBL] [Abstract][Full Text] [Related]
5. Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor. Levens N; Beil M; Schulz R J Pharmacol Exp Ther; 1991 Jun; 257(3):1013-9. PubMed ID: 2046018 [TBL] [Abstract][Full Text] [Related]
6. [Hemodynamic effects of sub-chronic NO synthase inhibition in conscious dogs: role of EDRF/NO in muscular exertion]. Puybasset L; Béa ML; Simon L; Ghaleh B; Giudicelli JF; Berdeaux A Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1217-21. PubMed ID: 8572877 [TBL] [Abstract][Full Text] [Related]
7. Role of endothelium-derived relaxing factor in the maintenance of renal blood flow in a rodent model of chronic hydronephrosis. Chen RN; Inman SR; Stowe NT; Novick AC Urology; 1995 Sep; 46(3):438-42. PubMed ID: 7660528 [TBL] [Abstract][Full Text] [Related]
8. Renal actions of a new adenosine agonist, CGS 21680A selective for the A2 receptor. Levens N; Beil M; Jarvis M J Pharmacol Exp Ther; 1991 Jun; 257(3):1005-12. PubMed ID: 2046017 [TBL] [Abstract][Full Text] [Related]
9. The effects of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs. Egi Y; Matsumura Y; Murata S; Umekawa T; Hisaki K; Takaoka M; Morimoto S J Pharmacol Exp Ther; 1994 May; 269(2):529-35. PubMed ID: 7514219 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide mediates the inhibitory action of platelet-activating factor on angiotensin II-induced renal vasoconstriction, in vivo. Handa RK; Strandhoy JW J Pharmacol Exp Ther; 1996 Jun; 277(3):1486-91. PubMed ID: 8667214 [TBL] [Abstract][Full Text] [Related]
11. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat. Clayton JS; Clark KL; Johns EJ; Drew GM Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960 [TBL] [Abstract][Full Text] [Related]
12. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Tolins JP; Raij L Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148 [TBL] [Abstract][Full Text] [Related]
13. L-arginine, but not N alpha-benzoyl-L-arginine ethyl ester, is a precursor of endothelium-derived relaxing factor. Fasehun OA; Gross SS; Rubin LE; Jaffe EA; Griffith OW; Levi R J Pharmacol Exp Ther; 1990 Dec; 255(3):1348-53. PubMed ID: 2175803 [TBL] [Abstract][Full Text] [Related]
14. Renal vascular and tubular actions of calcitonin gene-related peptide: effect of NG-nitro-L-arginine methyl ester. Elhawary AM; Pang CC J Pharmacol Exp Ther; 1995 Apr; 273(1):56-63. PubMed ID: 7714812 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide may participate in V2 vasopressin-receptor-mediated renal vasodilation. Aki Y; Tamaki T; Kiyomoto H; He H; Yoshida H; Iwao H; Abe Y J Cardiovasc Pharmacol; 1994 Feb; 23(2):331-6. PubMed ID: 7511766 [TBL] [Abstract][Full Text] [Related]
16. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. Perrella MA; Hildebrand FL; Margulies KB; Burnett JC Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690 [TBL] [Abstract][Full Text] [Related]
17. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. Baylis C; Harton P; Engels K J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847 [TBL] [Abstract][Full Text] [Related]
18. Effects of endothelin-3 on renal functions. Yamashita Y; Yukimura T; Miura K; Okumura M; Yamamoto K J Pharmacol Exp Ther; 1991 Dec; 259(3):1256-60. PubMed ID: 1762073 [TBL] [Abstract][Full Text] [Related]
19. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118 [TBL] [Abstract][Full Text] [Related]
20. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine. Salom MG; Lahera V; Romero JC Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]