BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 1545391)

  • 1. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor.
    Tolins JP
    J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
    Scholz H; Kurtz A
    J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor.
    Lanzone JA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1995 Jun; 153(6):2055-9. PubMed ID: 7752393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor.
    Levens N; Beil M; Schulz R
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1013-9. PubMed ID: 2046018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hemodynamic effects of sub-chronic NO synthase inhibition in conscious dogs: role of EDRF/NO in muscular exertion].
    Puybasset L; Béa ML; Simon L; Ghaleh B; Giudicelli JF; Berdeaux A
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1217-21. PubMed ID: 8572877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endothelium-derived relaxing factor in the maintenance of renal blood flow in a rodent model of chronic hydronephrosis.
    Chen RN; Inman SR; Stowe NT; Novick AC
    Urology; 1995 Sep; 46(3):438-42. PubMed ID: 7660528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal actions of a new adenosine agonist, CGS 21680A selective for the A2 receptor.
    Levens N; Beil M; Jarvis M
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1005-12. PubMed ID: 2046017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs.
    Egi Y; Matsumura Y; Murata S; Umekawa T; Hisaki K; Takaoka M; Morimoto S
    J Pharmacol Exp Ther; 1994 May; 269(2):529-35. PubMed ID: 7514219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide mediates the inhibitory action of platelet-activating factor on angiotensin II-induced renal vasoconstriction, in vivo.
    Handa RK; Strandhoy JW
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1486-91. PubMed ID: 8667214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
    Tolins JP; Raij L
    Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-arginine, but not N alpha-benzoyl-L-arginine ethyl ester, is a precursor of endothelium-derived relaxing factor.
    Fasehun OA; Gross SS; Rubin LE; Jaffe EA; Griffith OW; Levi R
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1348-53. PubMed ID: 2175803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal vascular and tubular actions of calcitonin gene-related peptide: effect of NG-nitro-L-arginine methyl ester.
    Elhawary AM; Pang CC
    J Pharmacol Exp Ther; 1995 Apr; 273(1):56-63. PubMed ID: 7714812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide may participate in V2 vasopressin-receptor-mediated renal vasodilation.
    Aki Y; Tamaki T; Kiyomoto H; He H; Yoshida H; Iwao H; Abe Y
    J Cardiovasc Pharmacol; 1994 Feb; 23(2):331-6. PubMed ID: 7511766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
    Perrella MA; Hildebrand FL; Margulies KB; Burnett JC
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.
    Baylis C; Harton P; Engels K
    J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of endothelin-3 on renal functions.
    Yamashita Y; Yukimura T; Miura K; Okumura M; Yamamoto K
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1256-60. PubMed ID: 1762073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs.
    Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine.
    Salom MG; Lahera V; Romero JC
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.