BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 15454335)

  • 1. Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins.
    Polk JD
    J Hum Evol; 2004 Oct; 47(4):237-52. PubMed ID: 15454335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates.
    Polk JD
    J Exp Biol; 2002 Nov; 205(Pt 21):3399-412. PubMed ID: 12324549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins.
    Steudel-Numbers KL; Tilkens MJ
    J Hum Evol; 2004; 47(1-2):95-109. PubMed ID: 15288526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): implications for the evolution of long hindlimb length in Homo.
    Isbell LA; Pruetz JD; Lewis M; Young TP
    Am J Phys Anthropol; 1998 Feb; 105(2):199-207. PubMed ID: 9511914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early hominin limb proportions.
    Richmond BG; Aiello LC; Wood BA
    J Hum Evol; 2002 Oct; 43(4):529-48. PubMed ID: 12393007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative postcranial body shape and locomotion in Chlorocebus aethiops and Cercopithecus mitis.
    Anapol F; Turner TR; Mott CS; Jolly CJ
    Am J Phys Anthropol; 2005 Jun; 127(2):231-9. PubMed ID: 15503342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergence of forelimb and hindlimb Natural Pendular Period in baboons (Papio cynocephalus) and its implication for the evolution of primate quadrupedalism.
    Raichlen DA
    J Hum Evol; 2004 Jun; 46(6):719-38. PubMed ID: 15183672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects.
    Ruff CB
    Am J Phys Anthropol; 2002 Dec; 119(4):305-42. PubMed ID: 12448016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional anatomy of the olecranon process in hominoids and plio-pleistocene hominins.
    Drapeau MS
    Am J Phys Anthropol; 2004 Aug; 124(4):297-314. PubMed ID: 15252859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella: a longitudinal and comparative study.
    Jungers WL; Fleagle JG
    Am J Phys Anthropol; 1980 Nov; 53(4):471-8. PubMed ID: 7468784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindlimb proportions, allometry, and biomechanics in Old World monkeys (primates, Cercopithecidae).
    Strasser E
    Am J Phys Anthropol; 1992 Feb; 87(2):187-213. PubMed ID: 1543245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
    Franz TM; Demes B; Carlson KJ
    J Hum Evol; 2005 Feb; 48(2):199-217. PubMed ID: 15701531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids.
    Ross C; Henneberg M
    Am J Phys Anthropol; 1995 Dec; 98(4):575-93. PubMed ID: 8599387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hominoid proximal radius: re-interpreting locomotor behaviors in early hominins.
    Patel BA
    J Hum Evol; 2005 Apr; 48(4):415-32. PubMed ID: 15788187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The jump as a fast mode of locomotion in arboreal and terrestrial biotopes.
    Günther MM; Ishida H; Kumakura H; Nakano Y
    Z Morphol Anthropol; 1991; 78(3):341-72. PubMed ID: 1887664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.
    Wang W; Crompton RH; Carey TS; Günther MM; Li Y; Savage R; Sellers WI
    J Hum Evol; 2004 Dec; 47(6):453-78. PubMed ID: 15566947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stride length and its determinants in humans, early hominids, primates, and mammals.
    Reynolds TR
    Am J Phys Anthropol; 1987 Jan; 72(1):101-15. PubMed ID: 3103457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body proportions of Homo habilis reviewed.
    Haeusler M; McHenry HM
    J Hum Evol; 2004 Apr; 46(4):433-65. PubMed ID: 15066379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new model predicting locomotor cost from limb length via force production.
    Pontzer H
    J Exp Biol; 2005 Apr; 208(Pt 8):1513-24. PubMed ID: 15802675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.