These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of plasma long-chain fatty acid oxidation in relation to uptake in human skeletal muscle during exercise. Roepstorff C; Vistisen B; Roepstorff K; Kiens B Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E696-705. PubMed ID: 15186996 [TBL] [Abstract][Full Text] [Related]
3. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Shearer J; Fueger PT; Bracy DP; Wasserman DH; Rottman JN Diabetes; 2005 Nov; 54(11):3133-9. PubMed ID: 16249436 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation barriers to skeletal and cardiac muscle glucose uptakes in high-fat fed mice: studies in mice with a 50% reduction of hexokinase II. Fueger PT; Lee-Young RS; Shearer J; Bracy DP; Heikkinen S; Laakso M; Rottman JN; Wasserman DH Diabetes; 2007 Oct; 56(10):2476-84. PubMed ID: 17639019 [TBL] [Abstract][Full Text] [Related]
5. Partial A1 adenosine receptor agonist regulates cardiac substrate utilization in insulin-resistant rats in vivo. Shearer J; Severson DL; Su L; Belardinelli L; Dhalla AK J Pharmacol Exp Ther; 2009 Jan; 328(1):306-11. PubMed ID: 18952888 [TBL] [Abstract][Full Text] [Related]
6. Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation. Fueger PT; Bracy DP; Malabanan CM; Pencek RR; Wasserman DH Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E77-84. PubMed ID: 13129858 [TBL] [Abstract][Full Text] [Related]
7. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. Binas B; Danneberg H; McWhir J; Mullins L; Clark AJ FASEB J; 1999 May; 13(8):805-12. PubMed ID: 10224224 [TBL] [Abstract][Full Text] [Related]
8. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Oakes ND; Thalén P; Aasum E; Edgley A; Larsen T; Furler SM; Ljung B; Severson D Am J Physiol Endocrinol Metab; 2006 May; 290(5):E870-81. PubMed ID: 16352676 [TBL] [Abstract][Full Text] [Related]
9. Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice. Fueger PT; Heikkinen S; Bracy DP; Malabanan CM; Pencek RR; Laakso M; Wasserman DH Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E958-63. PubMed ID: 12865258 [TBL] [Abstract][Full Text] [Related]
10. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Miura S; Kai Y; Kamei Y; Bruce CR; Kubota N; Febbraio MA; Kadowaki T; Ezaki O Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E47-55. PubMed ID: 18940938 [TBL] [Abstract][Full Text] [Related]
11. Muscle fatty acid uptake during exercise: possible mechanisms. Turcotte LP Exerc Sport Sci Rev; 2000 Jan; 28(1):4-9. PubMed ID: 11187066 [TBL] [Abstract][Full Text] [Related]
12. Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. Erol E; Cline GW; Kim JK; Taegtmeyer H; Binas B Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E977-82. PubMed ID: 15198933 [TBL] [Abstract][Full Text] [Related]
14. Investigation of in vivo fatty acid metabolism in AFABP/aP2(-/-) mice. Baar RA; Dingfelder CS; Smith LA; Bernlohr DA; Wu C; Lange AJ; Parks EJ Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E187-93. PubMed ID: 15367400 [TBL] [Abstract][Full Text] [Related]
15. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Xu A; Tso AW; Cheung BM; Wang Y; Wat NM; Fong CH; Yeung DC; Janus ED; Sham PC; Lam KS Circulation; 2007 Mar; 115(12):1537-43. PubMed ID: 17389279 [TBL] [Abstract][Full Text] [Related]
16. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Clavel S; Farout L; Briand M; Briand Y; Jouanel P Eur J Appl Physiol; 2002 Jul; 87(3):193-201. PubMed ID: 12111278 [TBL] [Abstract][Full Text] [Related]
17. A null mutation in H-FABP only partially inhibits skeletal muscle fatty acid metabolism. Binas B; Han XX; Erol E; Luiken JJ; Glatz JF; Dyck DJ; Motazavi R; Adihetty PJ; Hood DA; Bonen A Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E481-9. PubMed ID: 12900378 [TBL] [Abstract][Full Text] [Related]
18. Increased glucose oxidation in H-FABP null soleus muscle is associated with defective triacylglycerol accumulation and mobilization, but not with the defect of exogenous fatty acid oxidation. Adhikari S; Erol E; Binas B Mol Cell Biochem; 2007 Feb; 296(1-2):59-67. PubMed ID: 16909303 [TBL] [Abstract][Full Text] [Related]
19. Fatty acid transport proteins facilitate fatty acid uptake in skeletal muscle. Luiken JJ; Glatz JF; Bonen A Can J Appl Physiol; 2000 Oct; 25(5):333-52. PubMed ID: 11073569 [TBL] [Abstract][Full Text] [Related]
20. A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Weickert MO; Loeffelholz CV; Roden M; Chandramouli V; Brehm A; Nowotny P; Osterhoff MA; Isken F; Spranger J; Landau BR; Pfeiffer AF; Möhlig M Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E1078-84. PubMed ID: 17698986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]