These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15454429)

  • 1. Asymmetry in membrane responses to electric shocks: insights from bidomain simulations.
    Ashihara T; Trayanova NA
    Biophys J; 2004 Oct; 87(4):2271-82. PubMed ID: 15454429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell and tissue responses to electric shocks.
    Ashihara T; Trayanova NA
    Europace; 2005 Sep; 7 Suppl 2():155-65. PubMed ID: 16102513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane time constant during internal defibrillation strength shocks in intact heart: effects of Na+ and Ca2+ channel blockers.
    Mowrey KA; Efimov IR; Cheng Y
    J Cardiovasc Electrophysiol; 2009 Jan; 20(1):85-92. PubMed ID: 18775052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures.
    Fast VG; Cheek ER; Pollard AE; Ideker RE
    Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
    Nikolski VP; Sambelashvili AT; Krinsky VI; Efimov IR
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H412-8. PubMed ID: 14527941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of mechanisms by which electrical stimulation alters the transmembrane potential.
    Newton JC; Knisley SB; Zhou X; Pollard AE; Ideker RE
    J Cardiovasc Electrophysiol; 1999 Feb; 10(2):234-43. PubMed ID: 10090228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
    Colli-Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2011 Apr; 230(2):96-114. PubMed ID: 21329705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue.
    Aguel F; Debruin KA; Krassowska W; Trayanova NA
    J Cardiovasc Electrophysiol; 1999 May; 10(5):701-14. PubMed ID: 10355926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of variation in membrane excitability on propagation velocity of simulated action potentials for cardiac muscle and smooth muscle in the electric field model for cell-to-cell transmission of excitation.
    Sperelakis N; Kalloor B
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2216-9. PubMed ID: 15605874
    [No Abstract]   [Full Text] [Related]  

  • 15. Anode/cathode make and break phenomena in a model of defibrillation.
    Skouibine KB; Trayanova NA; Moore PK
    IEEE Trans Biomed Eng; 1999 Jul; 46(7):769-77. PubMed ID: 10396895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks.
    DeBruin KA; Krassowska W
    Ann Biomed Eng; 1998; 26(4):584-96. PubMed ID: 9662151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane potential changes caused by monophasic and biphasic shocks.
    Zhou X; Smith WM; Justice RK; Wayland JL; Ideker RE
    Am J Physiol; 1998 Nov; 275(5):H1798-807. PubMed ID: 9815088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the fiber curvature gradient on break excitation in cardiac tissue.
    Beaudoin DL; Roth BJ
    Pacing Clin Electrophysiol; 2006 May; 29(5):496-501. PubMed ID: 16689845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.