BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 15454431)

  • 1. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory.
    Im W; Roux B
    J Mol Biol; 2002 Sep; 322(4):851-69. PubMed ID: 12270719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical descriptions of experimental selectivity measurements in ion channels.
    Gillespie D; Eisenberg RS
    Eur Biophys J; 2002 Oct; 31(6):454-66. PubMed ID: 12355255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft wall ion channel in continuum representation with application to modeling ion currents in α-hemolysin.
    Simakov NA; Kurnikova MG
    J Phys Chem B; 2010 Nov; 114(46):15180-90. PubMed ID: 21028776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian dynamics simulations of ion transport through the VDAC.
    Lee KI; Rui H; Pastor RW; Im W
    Biophys J; 2011 Feb; 100(3):611-619. PubMed ID: 21281575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
    Im W; Seefeld S; Roux B
    Biophys J; 2000 Aug; 79(2):788-801. PubMed ID: 10920012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.
    Bolintineanu DS; Sayyed-Ahmad A; Davis HT; Kaznessis YN
    PLoS Comput Biol; 2009 Jan; 5(1):e1000277. PubMed ID: 19180178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion selectivity of alpha-hemolysin with beta-cyclodextrin adapter. II. Multi-ion effects studied with grand canonical Monte Carlo/Brownian dynamics simulations.
    Egwolf B; Luo Y; Walters DE; Roux B
    J Phys Chem B; 2010 Mar; 114(8):2901-9. PubMed ID: 20146515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores.
    Lee KI; Jo S; Rui H; Egwolf B; Roux B; Pastor RW; Im W
    J Comput Chem; 2012 Jan; 33(3):331-9. PubMed ID: 22102176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian dynamics simulation for modeling ion permeation across bionanotubes.
    Krishnamurthy V; Chung SH
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):102-11. PubMed ID: 15816176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
    Coalson RD; Kurnikova MG
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):81-93. PubMed ID: 15816174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels.
    Dyrka W; Bartuzel MM; Kotulska M
    Proteins; 2013 Oct; 81(10):1802-22. PubMed ID: 23720356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane Position Dependency of the pK
    Simakov NA; Kurnikova MG
    J Membr Biol; 2018 Jun; 251(3):393-404. PubMed ID: 29340712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance.
    Spronk SA; Elmore DE; Dougherty DA
    Biophys J; 2006 May; 90(10):3555-69. PubMed ID: 16500980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based prediction of the alpha-hemolysin structure in the hexameric state.
    Furini S; Domene C; Rossi M; Tartagni M; Cavalcanti S
    Biophys J; 2008 Sep; 95(5):2265-74. PubMed ID: 18502806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation.
    Krishnamurthy V; Chung SH
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):126-38. PubMed ID: 16805109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.