These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15454434)

  • 1. A model of the putative pore region of the cardiac ryanodine receptor channel.
    Welch W; Rheault S; West DJ; Williams AJ
    Biophys J; 2004 Oct; 87(4):2335-51. PubMed ID: 15454434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure.
    Shealy RT; Murphy AD; Ramarathnam R; Jakobsson E; Subramaniam S
    Biophys J; 2003 May; 84(5):2929-42. PubMed ID: 12719225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor.
    Mead-Savery FC; Wang R; Tanna-Topan B; Chen SR; Welch W; Williams AJ
    Biophys J; 2009 Feb; 96(4):1374-87. PubMed ID: 19217855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating.
    Wang R; Bolstad J; Kong H; Zhang L; Brown C; Chen SR
    J Biol Chem; 2004 Jan; 279(5):3635-42. PubMed ID: 14593104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico activation of KcsA K+ channel by lateral forces applied to the C-termini of inner helices.
    Tikhonov DB; Zhorov BS
    Biophys J; 2004 Sep; 87(3):1526-36. PubMed ID: 15345533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
    Bruhova I; Zhorov BS
    Biophys J; 2005 Aug; 89(2):1020-9. PubMed ID: 15908577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium permeability and sensitivity induced by mutations in the selectivity filter of the KcsA channel towards Kir channels.
    Raja M; Vales E
    Biochimie; 2010 Mar; 92(3):232-44. PubMed ID: 19962419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA.
    Domene C; Sansom MS
    Biophys J; 2003 Nov; 85(5):2787-800. PubMed ID: 14581184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations and KcsA channel gating.
    Shrivastava IH; Sansom MS
    Eur Biophys J; 2002 Jun; 31(3):207-16. PubMed ID: 12029333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid intracellular TEA block of the KcsA potassium channel.
    Kutluay E; Roux B; Heginbotham L
    Biophys J; 2005 Feb; 88(2):1018-29. PubMed ID: 15556975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel.
    Crouzy S; Bernèche S; Roux B
    J Gen Physiol; 2001 Aug; 118(2):207-18. PubMed ID: 11479347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation.
    Allen TW; Andersen OS; Roux B
    J Gen Physiol; 2004 Dec; 124(6):679-90. PubMed ID: 15572347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light at the end of the Ca(2+)-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels.
    Williams AJ; West DJ; Sitsapesan R
    Q Rev Biophys; 2001 Feb; 34(1):61-104. PubMed ID: 11388090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor.
    Wang Y; Xu L; Pasek DA; Gillespie D; Meissner G
    Biophys J; 2005 Jul; 89(1):256-65. PubMed ID: 15863483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global twisting motion of single molecular KcsA potassium channel upon gating.
    Shimizu H; Iwamoto M; Konno T; Nihei A; Sasaki YC; Oiki S
    Cell; 2008 Jan; 132(1):67-78. PubMed ID: 18191221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic aqueduct orifices facilitate K+ channel gating.
    Zhong W; Guo W; Ma S
    FEBS Lett; 2008 Oct; 582(23-24):3320-4. PubMed ID: 18775711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating.
    Euden J; Mason SA; Viero C; Thomas NL; Williams AJ
    J Biol Chem; 2013 Jun; 288(23):16671-16679. PubMed ID: 23632022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0.
    Arinaminpathy Y; Biggin PC; Shrivastava IH; Sansom MS
    FEBS Lett; 2003 Oct; 553(3):321-7. PubMed ID: 14572644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an amino-terminus determinant critical for ryanodine receptor/Ca2+ release channel function.
    Seidel M; de Meritens CR; Johnson L; Parthimos D; Bannister M; Thomas NL; Ozekhome-Mike E; Lai FA; Zissimopoulos S
    Cardiovasc Res; 2021 Feb; 117(3):780-791. PubMed ID: 32077934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels.
    Noskov SY; Roux B
    J Gen Physiol; 2007 Feb; 129(2):135-43. PubMed ID: 17227917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.