BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15454443)

  • 1. Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective.
    Arnold A; Paris M; Auger M
    Biophys J; 2004 Oct; 87(4):2456-69. PubMed ID: 15454443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach.
    Ratto TV; Longo ML
    Biophys J; 2002 Dec; 83(6):3380-92. PubMed ID: 12496105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures.
    Sugár IP; Thompson TE; Biltonen RL
    Biophys J; 1999 Apr; 76(4):2099-110. PubMed ID: 10096905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR Studies of lipid lateral diffusion in the DMPC/gramicidin D/water system: peptide aggregation and obstruction effects.
    Orädd G; Lindblom G
    Biophys J; 2004 Aug; 87(2):980-7. PubMed ID: 15298904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus-31 two-dimensional solid-state exchange NMR. Application to model membrane and biological systems.
    Fenske DB; Jarrell HC
    Biophys J; 1991 Jan; 59(1):55-69. PubMed ID: 2015390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometrical properties of gel and fluid clusters in DMPC/DSPC bilayers: Monte Carlo simulation approach using a two-state model.
    Sugár IP; Michonova-Alexova E; Chong PL
    Biophys J; 2001 Nov; 81(5):2425-41. PubMed ID: 11606260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations.
    Vogel A; Tan KT; Waldmann H; Feller SE; Brown MF; Huster D
    Biophys J; 2007 Oct; 93(8):2697-712. PubMed ID: 17557790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level.
    Deverall MA; Gindl E; Sinner EK; Besir H; Ruehe J; Saxton MJ; Naumann CA
    Biophys J; 2005 Mar; 88(3):1875-86. PubMed ID: 15613633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2003 May; 84(5):3079-86. PubMed ID: 12719238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy.
    Dave PC; Tiburu EK; Damodaran K; Lorigan GA
    Biophys J; 2004 Mar; 86(3):1564-73. PubMed ID: 14990483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Component and state separation in DMPC/DSPC lipid bilayers: a Monte Carlo simulation study.
    Michonova-Alexova EI; Sugár IP
    Biophys J; 2002 Oct; 83(4):1820-33. PubMed ID: 12324404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines.
    Almeida PF; Vaz WL; Thompson TE
    Biophys J; 1993 Feb; 64(2):399-412. PubMed ID: 8457666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates.
    Hughes E; Clayton JC; Middleton DA
    Biochemistry; 2005 Mar; 44(10):4055-66. PubMed ID: 15751982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of the surface topography in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine multibilayers.
    Giocondi MC; Le Grimellec C
    Biophys J; 2004 Apr; 86(4):2218-30. PubMed ID: 15041661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the long-chain/short-chain amphiphile ratio on lateral diffusion of PEG-lipid in magnetically aligned lipid bilayers as measured via pulsed-field-gradient NMR.
    Soong R; Macdonald PM
    Biophys J; 2005 Sep; 89(3):1850-60. PubMed ID: 15994903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M; Doucet JD; Voyer N; Auger M
    Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.
    Deol SS; Bond PJ; Domene C; Sansom MS
    Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: a solid-state 13C NMR study.
    Bouchard M; Le Guernevé C; Auger M
    Biochim Biophys Acta; 1998 Dec; 1415(1):181-92. PubMed ID: 9858726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.
    Banigan JR; Gayen A; Traaseth NJ
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):334-41. PubMed ID: 24835018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.