These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15454454)
1. Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Loos D; Cotlet M; De Schryver F; Habuchi S; Hofkens J Biophys J; 2004 Oct; 87(4):2598-608. PubMed ID: 15454454 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence spectroscopy of single photosynthetic light-harvesting supramolecular systems. Saga Y; Tamiaki H Cell Biochem Biophys; 2004; 40(2):149-65. PubMed ID: 15054220 [TBL] [Abstract][Full Text] [Related]
3. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins. Kumar CV; Duff MR Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505 [TBL] [Abstract][Full Text] [Related]
4. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals. Ranjbar Choubeh R; Sonani RR; Madamwar D; Struik PC; Bader AN; Robert B; van Amerongen H Photosynth Res; 2018 Mar; 135(1-3):79-86. PubMed ID: 28755150 [TBL] [Abstract][Full Text] [Related]
5. Nature of excited states and relaxation mechanisms in C-phycocyanin. Womick JM; Moran AM J Phys Chem B; 2009 Dec; 113(48):15771-82. PubMed ID: 19902910 [TBL] [Abstract][Full Text] [Related]
6. [Chromophore composition and nature of the absorption spectra of phycobiliproteins]. Stadnichuk IN; Mineeva LA; Gusev MV Biokhimiia; 1980 Sep; 45(9):1560-7. PubMed ID: 6788093 [TBL] [Abstract][Full Text] [Related]
7. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Squires AH; Moerner WE Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1-240) dimers. Long S; Zhou M; Tang K; Zeng XL; Niu Y; Guo Q; Zhao KH; Xia A Phys Chem Chem Phys; 2015 May; 17(20):13387-96. PubMed ID: 25925197 [TBL] [Abstract][Full Text] [Related]
9. Allophycocyanin and energy transfer. MacColl R Biochim Biophys Acta; 2004 Jul; 1657(2-3):73-81. PubMed ID: 15238265 [TBL] [Abstract][Full Text] [Related]
10. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. Wang J; Zhu R; Zou J; Liu H; Meng H; Zhen Z; Li W; Wang Z; Chen H; Pu Y; Weng Y J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39171718 [TBL] [Abstract][Full Text] [Related]
11. Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy. Wörmke S; Mackowski S; Brotosudarmo TH; Jung C; Zumbusch A; Ehrl M; Scheer H; Hofmann E; Hiller RG; Bräuchle C Biochim Biophys Acta; 2007 Jul; 1767(7):956-64. PubMed ID: 17572378 [TBL] [Abstract][Full Text] [Related]
12. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus. Demidov AA; Mimuro M Biophys J; 1995 Apr; 68(4):1500-6. PubMed ID: 7787035 [TBL] [Abstract][Full Text] [Related]
13. Under light limiting growth, CpcB lyase null mutants of the Cyanobacterium Synechococcus sp. PCC 7002 are capable of producing pigmented beta phycocyanin but with altered chromophore function. Derks AK; Vasiliev S; Bruce D Biochemistry; 2008 Nov; 47(45):11877-84. PubMed ID: 18925744 [TBL] [Abstract][Full Text] [Related]
14. Cryospectroscopy Studies of Intact Light-Harvesting Antennas Reveal Empirical Electronic Energy Transitions in Two Cyanobacteria Species. Nganou C; Adir N; Mkandawire M J Phys Chem B; 2018 Mar; 122(12):3068-3078. PubMed ID: 29457730 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Glazer AN; Stryer L Biophys J; 1983 Sep; 43(3):383-6. PubMed ID: 6414547 [TBL] [Abstract][Full Text] [Related]
17. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. Miao D; Ding WL; Zhao BQ; Lu L; Xu QZ; Scheer H; Zhao KH Biochim Biophys Acta; 2016 Jun; 1857(6):688-94. PubMed ID: 27045046 [TBL] [Abstract][Full Text] [Related]
18. Far-red light photoacclimation: Chromophorylation of FR induced α- and β-subunits of allophycocyanin from Chroococcidiopsis thermalis sp. PCC7203. Xu QZ; Han JX; Tang QY; Ding WL; Miao D; Zhou M; Scheer H; Zhao KH Biochim Biophys Acta; 2016 Sep; 1857(9):1607-1616. PubMed ID: 27368145 [TBL] [Abstract][Full Text] [Related]
19. The structure at 2 A resolution of Phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex. Contreras-Martel C; Matamala A; Bruna C; Poo-Caamaño G; Almonacid D; Figueroa M; Martínez-Oyanedel J; Bunster M Biophys Chem; 2007 Feb; 125(2-3):388-96. PubMed ID: 17118524 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence spectral dynamics of single LHCII trimers. Krüger TP; Novoderezhkin VI; Ilioaia C; van Grondelle R Biophys J; 2010 Jun; 98(12):3093-101. PubMed ID: 20550923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]