These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15454456)

  • 1. Crystallization mechanisms of hemoglobin C in the R state.
    Feeling-Taylor AR; Yau ST; Petsev DN; Nagel RL; Hirsch RE; Vekilov PG
    Biophys J; 2004 Oct; 87(4):2621-9. PubMed ID: 15454456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential pathways in oxy and deoxy HbC aggregation/crystallization.
    Hirsch RE; Samuel RE; Fataliev NA; Pollack MJ; Galkin O; Vekilov PG; Nagel RL
    Proteins; 2001 Jan; 42(1):99-107. PubMed ID: 11093264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.
    Vekilov PG; Feeling-Taylor AR; Petsev DN; Galkin O; Nagel RL; Hirsch RE
    Biophys J; 2002 Aug; 83(2):1147-56. PubMed ID: 12124294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexibility and nucleation in sickle hemoglobin.
    Ivanova M; Jasuja R; Krasnosselskaia L; Josephs R; Wang Z; Ding M; Horiuchi K; Adachi K; Ferrone FA
    J Mol Biol; 2001 Dec; 314(4):851-61. PubMed ID: 11734002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions between Hb alpha-G Philadelphia, HbC, and HbS: phenotypic implications for SC alpha-G Philadelphia disease.
    Lawrence C; Hirsch RE; Fataliev NA; Patel S; Fabry ME; Nagel RL
    Blood; 1997 Oct; 90(7):2819-25. PubMed ID: 9326250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation and crystal growth of hemoglobins. The case of HbC.
    Vekilov PG; Feeling-Taylor A; Hirsch RE
    Methods Mol Med; 2003; 82():155-76. PubMed ID: 12669643
    [No Abstract]   [Full Text] [Related]  

  • 7. Acceleration of hemoglobin C crystallization by hemoglobin S.
    Lin MJ; Nagel RL; Hirsch RE
    Blood; 1989 Oct; 74(5):1823-5. PubMed ID: 2790206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation and crystallization of hemoglobin C in transgenic mouse and human erythrocytes.
    Canterino JE; Galkin O; Vekilov PG; Hirsch RE
    Biophys J; 2008 Oct; 95(8):4025-33. PubMed ID: 18621841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compound heterozygosity for hemoglobin C and Korle-Bu: moderate microcytic hemolytic anemia and acceleration of crystal formation [corrected].
    Nagel RL; Lin MJ; Witkowska HE; Fabry ME; Bestak M; Hirsch RE
    Blood; 1993 Sep; 82(6):1907-12. PubMed ID: 7691242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent entropy contribution to the free energy of protein crystallization.
    Vekilov PG; Feeling-Taylor AR; Yau ST; Petsev D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1611-6. PubMed ID: 12351872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of transmembrane proteins in cubo: mechanisms of crystal growth and defect formation.
    Qutub Y; Reviakine I; Maxwell C; Navarro J; Landau EM; Vekilov PG
    J Mol Biol; 2004 Nov; 343(5):1243-54. PubMed ID: 15491610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of hemolytic anemia in homozygous hemoglobin C disease. Electron microscopic study by the freeze-etching technique.
    Lessin LS; Jensen WN; Ponder E
    J Exp Med; 1969 Sep; 130(3):443-66. PubMed ID: 5807277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of RNA crystal growth by atomic force microscopy.
    Ng JD; Kuznetsov YG; Malkin AJ; Keith G; Giegé R; McPherson A
    Nucleic Acids Res; 1997 Jul; 25(13):2582-8. PubMed ID: 9185567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein crystallization: from purified protein to diffraction-quality crystal.
    Chayen NE; Saridakis E
    Nat Methods; 2008 Feb; 5(2):147-53. PubMed ID: 18235435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for enhanced nucleation of protein crystals on a fractal porous substrate.
    Stolyarova S; Saridakis E; Chayen NE; Nemirovsky Y
    Biophys J; 2006 Nov; 91(10):3857-63. PubMed ID: 16920829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin.
    Ko TP; Kuznetsov YG; Malkin AJ; Day J; McPherson A
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):829-39. PubMed ID: 11375502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure.
    Yip CM; Brader ML; DeFelippis MR; Ward MD
    Biophys J; 1998 May; 74(5):2199-209. PubMed ID: 9591647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy.
    Jansen R; Dzwolak W; Winter R
    Biophys J; 2005 Feb; 88(2):1344-53. PubMed ID: 15574704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Proteolysis Condition-Induced Crystallization of the XcpVWX Complex in Different Lattices.
    Zhang Y; Wang S; Jia Z
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.