BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15454567)

  • 1. On the distribution of temporal variations in allele frequency: consequences for the estimation of effective population size and the detection of loci undergoing selection.
    Goldringer I; Bataillon T
    Genetics; 2004 Sep; 168(1):563-8. PubMed ID: 15454567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the genome-wide contribution of selection to temporal allele frequency change.
    Buffalo V; Coop G
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20672-20680. PubMed ID: 32817464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling for P-value inflation in allele frequency change in experimental evolution and artificial selection experiments.
    Kemppainen P; Rønning B; Kvalnes T; Hagen IJ; Ringsby TH; Billing AM; Pärn H; Lien S; Husby A; Saether BE; Jensen H
    Mol Ecol Resour; 2017 Jul; 17(4):770-782. PubMed ID: 27813315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stationary distribution of allele frequencies when selection acts at unlinked loci.
    Fearnhead P
    Theor Popul Biol; 2006 Nov; 70(3):376-86. PubMed ID: 16563450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous estimation of mixing rates and genetic drift under successive sampling of genetic markers with application to the mud crab (Scylla paramamosain) in Japan.
    Kitakado T; Kitada S; Obata Y; Kishino H
    Genetics; 2006 Aug; 173(4):2063-72. PubMed ID: 16928801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Limits to Estimating Population-Genetic Parameters with Temporal Data.
    Lynch M; Ho WC
    Genome Biol Evol; 2020 Apr; 12(4):443-455. PubMed ID: 32181820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and estimation of effective population size.
    Wang J; Santiago E; Caballero A
    Heredity (Edinb); 2016 Oct; 117(4):193-206. PubMed ID: 27353047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes in allele frequencies in two European F(2) flint maize populations under modified recurrent full-sib selection.
    Falke KC; Flachenecker C; Melchinger AE; Piepho HP; Maurer HP; Frisch M
    Theor Appl Genet; 2007 Mar; 114(5):765-76. PubMed ID: 17322961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference from the stationary distribution of allele frequencies in a family of Wright-Fisher models with two levels of genetic variability.
    Ferguson JM; Buzbas EO
    Theor Popul Biol; 2018 Jul; 122():78-87. PubMed ID: 29574050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying signatures of selection in genetic time series.
    Feder AF; Kryazhimskiy S; Plotkin JB
    Genetics; 2014 Feb; 196(2):509-22. PubMed ID: 24318534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One size fits all? Direct evidence for the heterogeneity of genetic drift throughout the genome.
    Jiménez-Mena B; Tataru P; Brøndum RF; Sahana G; Guldbrandtsen B; Bataillon T
    Biol Lett; 2016 Jul; 12(7):. PubMed ID: 27405384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.
    Doekes HP; Veerkamp RF; Bijma P; Hiemstra SJ; Windig JJ
    Genet Sel Evol; 2018 Apr; 50(1):15. PubMed ID: 29642838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion approximations for one-locus multi-allele kin selection, mutation and random drift in group-structured populations: a unifying approach to selection models in population genetics.
    Lessard S
    J Math Biol; 2009 Nov; 59(5):659-96. PubMed ID: 19156416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data.
    Jewett EM; Steinrücken M; Song YS
    Mol Biol Evol; 2016 Nov; 33(11):3002-3027. PubMed ID: 27550904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids.
    Gompert Z; Buerkle CA
    Mol Ecol; 2009 Mar; 18(6):1207-24. PubMed ID: 19243513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple, semi-deterministic approximation to the distribution of selective sweeps in large populations.
    Martin G; Lambert A
    Theor Popul Biol; 2015 May; 101():40-6. PubMed ID: 25724404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Inference in the Wright-Fisher Model Using Allele Frequency Data.
    Tataru P; Simonsen M; Bataillon T; Hobolth A
    Syst Biol; 2017 Jan; 66(1):e30-e46. PubMed ID: 28173553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waiting with and without recombination: the time to production of a double mutant.
    Christiansen FB; Otto SP; Bergman A; Feldman MW
    Theor Popul Biol; 1998 Jun; 53(3):199-215. PubMed ID: 9679320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Nearly Neutral Model of Molecular Signatures of Natural Selection after Change in Population Size.
    Müller R; Kaj I; Mugal CF
    Genome Biol Evol; 2022 May; 14(5):. PubMed ID: 35478252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of neutral and selected alleles when the offspring distribution is skewed.
    Der R; Epstein C; Plotkin JB
    Genetics; 2012 Aug; 191(4):1331-44. PubMed ID: 22661323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.