These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15454685)

  • 1. Factors considered in using birds for evaluating endocrine-disrupting chemicals.
    Touart LW
    ILAR J; 2004; 45(4):462-8. PubMed ID: 15454685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting appropriate animal models and experimental designs for endocrine disruptor research and testing studies.
    Stokes WS
    ILAR J; 2004; 45(4):387-93. PubMed ID: 15454677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the laboratory rat as a model in endocrine disruptor screening and testing.
    Gray LE; Wilson V; Noriega N; Lambright C; Furr J; Stoker TE; Laws SC; Goldman J; Cooper RL; Foster PM
    ILAR J; 2004; 45(4):425-37. PubMed ID: 15454681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use and role of invertebrate models in endocrine disruptor research and testing.
    deFur PL
    ILAR J; 2004; 45(4):484-93. PubMed ID: 15454687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals.
    Ankley GT; Johnson RD
    ILAR J; 2004; 45(4):469-83. PubMed ID: 15454686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commentary: setting aside tradition when dealing with endocrine disruptors.
    Colborn T
    ILAR J; 2004; 45(4):394-400. PubMed ID: 15454678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro models in endocrine disruptor screening.
    Charles GD
    ILAR J; 2004; 45(4):494-501. PubMed ID: 15454688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainties for endocrine disrupters: our view on progress.
    Daston GP; Cook JC; Kavlock RJ
    Toxicol Sci; 2003 Aug; 74(2):245-52. PubMed ID: 12730617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitellogenin detection and chick pathology are useful endpoints to evaluate endocrine-disrupting effects in avian one-generation reproduction study.
    Shibuya K; Wada M; Mizutani M; Sato K; Itabashi M; Sakamoto T
    Environ Toxicol Chem; 2005 Jul; 24(7):1654-66. PubMed ID: 16050582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: establishing reliable end points of exposure.
    Ottinger MA; Quinn MJ; Lavoie E; Abdelnabi MA; Thompson N; Hazelton JL; Wu JM; Beavers J; Jaber M
    Domest Anim Endocrinol; 2005 Aug; 29(2):411-9. PubMed ID: 15998506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 2 G hypergravity exposure on Bobwhite (Colinus virginianus) and Japanese quail (Coturnix coturnix japonica).
    Ronca AE; Baer LA; Everett EM; Shaughnessey R; Foushee RE
    J Gravit Physiol; 2004 Jul; 11(2):P241-2. PubMed ID: 16240529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail.
    Ottinger MA; Abdelnabi MA; Henry P; McGary S; Thompson N; Wu JM
    Horm Behav; 2001 Sep; 40(2):234-47. PubMed ID: 11534988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to the assessment of toxicity data with endpoints related to endocrine disruption.
    Harvey PW; Johnson I
    J Appl Toxicol; 2002; 22(4):241-7. PubMed ID: 12210541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal models and studies of in utero endocrine disruptor effects.
    Vandenbergh JG
    ILAR J; 2004; 45(4):438-42. PubMed ID: 15454682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsuitability of the northern bobwhite as a model species for the assessment of reproductive behavior in toxicological studies.
    Quinn MJ; McFarland CA; Johnson MS
    Toxicol Mech Methods; 2009 Jan; 19(1):40-3. PubMed ID: 19778231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Japanese and bobwhite quail as indicator species in avian toxicity test. ECPA/GIFAP Environmental Round Table.
    Romijn CA; Grau R; Guth JA; Harrison EG; Jackson CM; Lefebvre B; Smith WW; Street JR
    Chemosphere; 1995 Mar; 30(6):1033-40. PubMed ID: 7728512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid sequence of Japanese quail (Coturnix japonica) and northern bobwhite (Colinus virginianus) myoglobin.
    Goodson J; Beckstead RB; Payne J; Singh RK; Mohan A
    Food Chem; 2015 Aug; 181():256-62. PubMed ID: 25794748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In ovo exposure quail assay for risk assessment of endocrine disrupting chemicals.
    Kamata R; Takahashi S; Shimizu A; Morita M; Shiraishi F
    Arch Toxicol; 2006 Dec; 80(12):857-67. PubMed ID: 16710698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory animal science issues in the design and conduct of studies with endocrine-active compounds.
    Everitt JI; Foster PM
    ILAR J; 2004; 45(4):417-24. PubMed ID: 15454680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular anomalies following oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) in a one-generation study with Japanese quail (Coturnix japonica).
    Jackovitz AM; Koistinen KA; Lent EM; Bannon DI; Quinn MJ; Johnson MS
    J Toxicol Environ Health A; 2018; 81(15):718-733. PubMed ID: 29939830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.