These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15454699)

  • 1. Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis.
    Stokes IA; Gardner-Morse M
    Spine (Phila Pa 1976); 2004 Oct; 29(19):2103-7. PubMed ID: 15454699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature.
    Stokes IA
    Spine (Phila Pa 1976); 1997 Nov; 22(21):2495-503. PubMed ID: 9383855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation.
    Stokes IA
    Eur Spine J; 2007 Oct; 16(10):1621-8. PubMed ID: 17653775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of muscles and effects of load on growth.
    Stokes I; Gardner-Morse M
    Stud Health Technol Inform; 2002; 91():314-7. PubMed ID: 15457745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis.
    Wang L; Zhang B; Chen S; Lu X; Li ZY; Guo Q
    World Neurosurg; 2016 Nov; 95():126-133. PubMed ID: 27521732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of abdominal muscle coactivation on lumbar spine stability.
    Gardner-Morse MG; Stokes IA
    Spine (Phila Pa 1976); 1998 Jan; 23(1):86-91; discussion 91-2. PubMed ID: 9460158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to study lumbar spine response to axial compression during magnetic resonance imaging: technical note.
    Wisleder D; Werner SL; Kraemer WJ; Fleck SJ; Zatsiorsky VM
    Spine (Phila Pa 1976); 2001 Sep; 26(18):E416-20. PubMed ID: 11547212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles.
    Patwardhan AG; Meade KP; Lee B
    J Biomech Eng; 2001 Jun; 123(3):212-7. PubMed ID: 11476363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Low Bone Mineral Status on Biomechanical Characteristics in Idiopathic Scoliotic Spinal Deformity.
    Song XX; Jin LY; Li XF; Qian L; Shen HX; Liu ZD; Yu BW
    World Neurosurg; 2018 Feb; 110():e321-e329. PubMed ID: 29133001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of compressive follower load on spine in a simplified dynamic state: a simulation study.
    Kim BS; Lim TH; Kwon TK; Han KS
    Biomed Mater Eng; 2014; 24(6):2319-29. PubMed ID: 25226932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk Hybrid Passive-Active Musculoskeletal Modeling to Determine the Detailed T12-S1 Response Under In Vivo Loads.
    Khoddam-Khorasani P; Arjmand N; Shirazi-Adl A
    Ann Biomed Eng; 2018 Nov; 46(11):1830-1843. PubMed ID: 29946972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of optimization criterion in static asymmetric analysis of lumbar spine load.
    Daniel M
    Wien Med Wochenschr; 2011 Oct; 161(19-20):477-85. PubMed ID: 21792528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.
    Little JP; Pearcy MJ; Izatt MT; Boom K; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():220-8. PubMed ID: 26658078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates.
    Brown SH; Potvin JR
    J Biomech; 2005 Apr; 38(4):745-54. PubMed ID: 15713295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spinal curve in standing and sitting postures in children with idiopathic scoliosis.
    Gram MC; Hasan Z
    Spine (Phila Pa 1976); 1999 Jan; 24(2):169-77. PubMed ID: 9926389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.