BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15455063)

  • 1. Distribution of ovary ecdysteroidogenic hormone I in the nervous system and gut of mosquitoes.
    Brown MR; Cao C
    J Insect Sci; 2001; 1():3. PubMed ID: 15455063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of an insulin-like peptide in brains of two flies.
    Cao C; Brown MR
    Cell Tissue Res; 2001 May; 304(2):317-21. PubMed ID: 11396725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.
    Borovsky D; Meola SM
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunostaining for allatotropin and allatostatin-A and -C in the mosquitoes Aedes aegypti and Anopheles albimanus.
    Hernández-Martínez S; Li Y; Lanz-Mendoza H; Rodríguez MH; Noriega FG
    Cell Tissue Res; 2005 Jul; 321(1):105-13. PubMed ID: 15909164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti.
    Chen K; Dou X; Eum JH; Harrison RE; Brown MR; Strand MR
    Insect Biochem Mol Biol; 2023 Dec; 163():104028. PubMed ID: 37913852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.
    Gulia-Nuss M; Elliot A; Brown MR; Strand MR
    J Insect Physiol; 2015 Nov; 82():8-16. PubMed ID: 26255841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution.
    Godoy RSM; Barbosa RC; Huang W; Secundino NFC; Pimenta PFP; Jacobs-Lorena M; Martins GF
    Cell Tissue Res; 2023 Aug; 393(2):297-320. PubMed ID: 37272999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis.
    Prévot GI; Laurent-Winter C; Rodhain F; Bourgouin C
    Malar J; 2003 Feb; 2():1. PubMed ID: 12605724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti.
    Vogel KJ; Brown MR; Strand MR
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5057-62. PubMed ID: 25848040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti.
    Dhara A; Eum JH; Robertson A; Gulia-Nuss M; Vogel KJ; Clark KD; Graf R; Brown MR; Strand MR
    Insect Biochem Mol Biol; 2013 Dec; 43(12):1100-8. PubMed ID: 24076067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae.
    Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ
    Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistological localization of regulatory peptides in the midgut of the female mosquito Aedes aegypti.
    Veenstra JA; Lau GW; Agricola HJ; Petzel DH
    Histochem Cell Biol; 1995 Nov; 104(5):337-47. PubMed ID: 8574883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor.
    Cashman JS; Cozier GE; Harrison C; Isaac RE; Acharya KR
    Biochem J; 2019 Nov; 476(22):3505-3520. PubMed ID: 31682720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transcriptomic atlas of
    Hixson B; Bing XL; Yang X; Bonfini A; Nagy P; Buchon N
    Elife; 2022 Apr; 11():. PubMed ID: 35471187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.
    Jonusaite S; Donini A; Kelly SP
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Mar; 205():58-67. PubMed ID: 27988380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae).
    Meyers JI; Gray M; Foy BD
    J Exp Biol; 2015 May; 218(Pt 10):1487-95. PubMed ID: 25994632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.
    Vargas HC; Farnesi LC; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2014 Mar; 62():54-60. PubMed ID: 24534672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helicostatins: brain-gut peptides of the moth, Helicoverpa armigera (Lepidoptera: Noctuidae).
    Davey M; Duve H; Thorpe A; East P
    Arch Insect Biochem Physiol; 2005 Jan; 58(1):1-16. PubMed ID: 15599938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways.
    Valzania L; Mattee MT; Strand MR; Brown MR
    Dev Biol; 2019 Oct; 454(1):85-95. PubMed ID: 31153832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.