BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15455132)

  • 1. Structural organization of the basal layer and morphofunctional characteristics of mouse epidermal cambial cells.
    Yavisheva TM; Shcherbakov SD; Golubeva IS; Sharafutdinov GZ; Savluchinskaya LA
    Bull Exp Biol Med; 2004 May; 137(5):513-6. PubMed ID: 15455132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of cambial dermal cells (fibroblasts) and epidermis in morphofunctional area of mouse skin.
    Yavisheva TM; Shcherbakov SD; Golubeva IS; Sharafutdinov GZ
    Bull Exp Biol Med; 2007 Nov; 144(5):748-53. PubMed ID: 18683514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peculiarities of proliferation and differentiation of cambial and daughter cells of epidermal-dermal morphofunctional zone in normal epithelium and in cancer.
    Yavisheva TM; Shcherbakov SD
    Bull Exp Biol Med; 2010 Oct; 149(4):521-6. PubMed ID: 21234456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characteristics of proliferation and differentiation of cambial and daughter cells in morphofunctional zones in the normal epithelium and cancer using age aspect].
    Iavisheva TM; Shcherbakov SD
    Adv Gerontol; 2009; 22(4):605-13. PubMed ID: 20405727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peculiarities of proliferation of epidermal cambial cells in mouse skin.
    Yavisheva TM; Shcherbakov SD; Dubinkin IV
    Bull Exp Biol Med; 2005 Jul; 140(1):118-21. PubMed ID: 16254636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of the work of morphofunctional zones in normal epithelium, fibroadenoma, and cancer of the breast.
    Yavisheva TM; Shcherbakov SD; Golubeva IS; Savluchinskaya LA
    Bull Exp Biol Med; 2005 Aug; 140(2):231-4. PubMed ID: 16283009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of epidermal melanocytes and langerhans cells with epidermal cambial cells.
    Yavisheva TM; Shcherbakov SD; Golubeva IS; Savluchinskaya LA; Ryzhova NI
    Bull Exp Biol Med; 2012 Jul; 153(3):367-70. PubMed ID: 22866314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-specific morphofunctional changes in cambial cells and their derivatives in human skin.
    Yavisheva TM; Shcherbakov SD
    Bull Exp Biol Med; 2009 Sep; 148(3):437-40. PubMed ID: 20396707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Participation of morphofunctional zones in aging processes].
    Iavisheva TM; Shcherbakov SD
    Adv Gerontol; 2012; 25(4):604-11. PubMed ID: 23734504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological changes in epidermal basal cells of different location induced by X-rays.
    Mel'chikov AS; Ryzhov AI; Medvedev MA
    Bull Exp Biol Med; 2003 Aug; 136(2):196-8. PubMed ID: 14631509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temporal and spatial expression of the novel Ca++-binding proteins, Scarf and Scarf2, during development and epidermal differentiation.
    Hwang M; Kalinin A; Morasso MI
    Gene Expr Patterns; 2005 Aug; 5(6):801-8. PubMed ID: 15922673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrophils, differentiated macrophages, and monocyte/macrophage antigen presenting cells infiltrate murine epidermis after UV injury.
    Cooper KD; Duraiswamy N; Hammerberg C; Allen E; Kimbrough-Green C; Dillon W; Thomas D
    J Invest Dermatol; 1993 Aug; 101(2):155-63. PubMed ID: 8393901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Melanoma and cancer emergence in persons of 20-60 years against normal quantity of cambial cells in morphofunctional zones].
    Iavisheva TM; Shchebakov SD
    Adv Gerontol; 2014; 27(4):753-7. PubMed ID: 25946855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo.
    Arabzadeh A; Troy TC; Turksen K
    Mol Cell Biol; 2006 Aug; 26(15):5876-87. PubMed ID: 16847338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of skin γδ T lymphocytes on wound healing of mice through regulating proliferation and differentiation of mice epidermal cells].
    Zhu HJ; Li YS; Wang YP; Hu XH; Zhang XR; Qiu L; He WF; Luo GX
    Zhonghua Shao Shang Za Zhi; 2019 Apr; 35(4):298-307. PubMed ID: 31060178
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and Enrichment of Newborn and Adult Skin Stem Cells of the Interfollicular Epidermis.
    Sol S; Antonini D; Missero C
    Methods Mol Biol; 2019; 1879():119-132. PubMed ID: 29582373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny.
    Arnold I; Watt FM
    Curr Biol; 2001 Apr; 11(8):558-68. PubMed ID: 11369200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, Culture, and Characterization of Primary Mouse Epidermal Keratinocytes.
    Zhang LJ
    Methods Mol Biol; 2019; 1940():205-215. PubMed ID: 30788828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields.
    Collard JF; Lazar C; Nowé A; Hinsenkamp M
    Prog Biophys Mol Biol; 2013 Jan; 111(1):37-45. PubMed ID: 23257322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.
    Ivanova IA; D'Souza SJ; Dagnino L
    Int J Biol Sci; 2005; 1(2):87-95. PubMed ID: 15951853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.