These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15455757)

  • 1. Surface plasmon polariton propagation in nanoscale metal gap waveguides.
    Wang B; Wang GP
    Opt Lett; 2004 Sep; 29(17):1992-4. PubMed ID: 15455757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting.
    Wu F; Han D; Hu X; Liu X; Zi J
    J Phys Condens Matter; 2009 May; 21(18):185010. PubMed ID: 21825456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale metal waveguide arrays as plasmon lenses.
    Fan X; Wang GP
    Opt Lett; 2006 May; 31(9):1322-4. PubMed ID: 16642099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic all-optical switching based on metamaterial/metal waveguides with local nonlinearity.
    Lotfi F; Sang-Nourpour N; Kheradmand R
    Nanotechnology; 2020 Jan; 31(1):015201. PubMed ID: 31530750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of nanoscale interferometer and array focusing by metal heterowaveguides.
    Wang B; Wang GP
    Opt Express; 2005 Dec; 13(26):10558-63. PubMed ID: 19503270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of symmetry breaking degrees on surface plasmon polaritons propagation in branched silver nanowire waveguides.
    Hua J; Wu F; Xu Z; Wang W
    Sci Rep; 2016 Sep; 6():34418. PubMed ID: 27677403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband directional coupling in aluminum nitride nanophotonic circuits.
    Stegmaier M; Pernice WH
    Opt Express; 2013 Mar; 21(6):7304-15. PubMed ID: 23546114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonscattering Photodetection in the Propagation of Unidirectional Surface Plasmon Polaritons Embedded with Graphene.
    Wu CH; Ku CJ; Yu MW; Yang JH; Lu TC; Lin TR; Yang CS; Chen KP
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30299-30305. PubMed ID: 35675390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering of spoof surface plasmon polaritons in defect-rich THz waveguides.
    Klein AK; Basden A; Hammler J; Tyas L; Cooke M; Balocco C; Zeze D; Girkin JM; Gallant A
    Sci Rep; 2019 Apr; 9(1):6288. PubMed ID: 31000800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.
    Bozhevolnyi SI; Volkov VS; Devaux E; Laluet JY; Ebbesen TW
    Nature; 2006 Mar; 440(7083):508-11. PubMed ID: 16554814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon polariton propagation and combination in Y-shaped metallic channels.
    Gao H; Shi H; Wang C; Du C; Luo X; Deng Q; Lv Y; Lin X; Yao H
    Opt Express; 2005 Dec; 13(26):10795-800. PubMed ID: 19503297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency modulation of coupling between different polaritons in an in-plane graphene/hexagonal boron nitride heterostructure.
    Guo X; Hu H; Hu D; Liao B; Chen K; Liu L; Zhu X; Yang X; Dai Q
    Nanoscale; 2019 Feb; 11(6):2703-2709. PubMed ID: 30672542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
    Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N
    Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional coupling of surface plasmon polaritons at complementary split-ring resonators.
    Hwang Y; Yang JK
    Sci Rep; 2019 May; 9(1):7348. PubMed ID: 31089193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical bistability in metal gap waveguide nanocavities.
    Shen Y; Wang GP
    Opt Express; 2008 Jun; 16(12):8421-6. PubMed ID: 18545555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive long-range surface plasmon-polariton devices in Cytop.
    Fan H; Buckley R; Berini P
    Appl Opt; 2012 Apr; 51(10):1459-67. PubMed ID: 22505063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial plasmonic Bloch oscillations in nanoscale three-dimensional surface plasmon polaritons metal waveguide arrays.
    Lin W; Wang W
    Opt Express; 2019 Aug; 27(17):24591-24600. PubMed ID: 31510346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete plasmonic Talbot effect in finite metal waveguide arrays.
    Shi X; Yang W; Xing H; Chen X
    Opt Lett; 2015 Apr; 40(8):1635-8. PubMed ID: 25872035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-current-induced unidirectional propagation of surface plasmon-polaritons.
    Bliokh KY; Rodríguez-Fortuño FJ; Bekshaev AY; Kivshar YS; Nori F
    Opt Lett; 2018 Mar; 43(5):963-966. PubMed ID: 29489756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.