BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15455771)

  • 1. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media.
    Liu Q; Ramanujam N
    Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative spectroscopy of superficial turbid media.
    Tseng SH; Hayakawa C; Tromberg BJ; Spanier J; Durkin AJ
    Opt Lett; 2005 Dec; 30(23):3165-7. PubMed ID: 16350274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media.
    Amelink A; Bard MP; Burgers SA; Sterenborg HJ
    Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-optic fluorescence correlation spectrometer.
    Garai K; Muralidhar M; Maiti S
    Appl Opt; 2006 Oct; 45(28):7538-42. PubMed ID: 16983444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical fiber-based fluorescent viscosity sensor.
    Haidekker MA; Akers WJ; Fischer D; Theodorakis EA
    Opt Lett; 2006 Sep; 31(17):2529-31. PubMed ID: 16902608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy.
    Ghosh N; Majumder SK; Patel HS; Gupta PK
    Opt Lett; 2005 Jan; 30(2):162-4. PubMed ID: 15675700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
    Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L
    Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the local optical properties of turbid media by differential path-length spectroscopy.
    Amelink A; Sterenborg HJ
    Appl Opt; 2004 May; 43(15):3048-54. PubMed ID: 15176191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Phys Med Biol; 2008 Feb; 53(4):937-51. PubMed ID: 18263950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design.
    Pfefer TJ; Matchette LS; Ross AM; Ediger MN
    Opt Lett; 2003 Jan; 28(2):120-2. PubMed ID: 12656504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue.
    Swartling J; Svensson J; Bengtsson D; Terike K; Andersson-Engels S
    Appl Opt; 2005 Apr; 44(10):1934-41. PubMed ID: 15813529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration.
    Ong YH; Liu Q
    J Biomed Opt; 2013 Nov; 18(11):110503. PubMed ID: 24247742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers.
    Skala MC; Palmer GM; Zhu C; Liu Q; Vrotsos KM; Marshek-Stone CL; Gendron-Fitzpatrick A; Ramanujam N
    Lasers Surg Med; 2004; 34(1):25-38. PubMed ID: 14755422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and development of a hand-held optical probe toward fluorescence diagnostic imaging.
    Jayachandran B; Ge J; Regalado S; Godavarty A
    J Biomed Opt; 2007; 12(5):054014. PubMed ID: 17994902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.