These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15455780)

  • 1. Three-dimensional woodpile photonic crystal templates for the infrared spectral range.
    Mizeikis V; Seet KK; Juodkazis S; Misawa H
    Opt Lett; 2004 Sep; 29(17):2061-3. PubMed ID: 15455780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates.
    Chanda D; Abolghasemi L; Herman PR
    Opt Express; 2006 Sep; 14(19):8568-77. PubMed ID: 19529236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformal CVD-Grown MoS
    Taverne MPC; Zheng X; Chen YJ; Morgan KA; Chen L; Palakkool NM; Rezaie D; Awachi H; Rarity JG; Hewak DW; Huang CC; Ho YD
    ACS Appl Opt Mater; 2023 May; 1(5):990-996. PubMed ID: 37255502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-PĂ©rez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region.
    Mizeikis V; Juodkazis S; Tarozaite R; Juodkazyte J; Juodkazis K; Misawa H
    Opt Express; 2007 Jun; 15(13):8454-64. PubMed ID: 19547177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal.
    Zhou G; Gu M
    Opt Lett; 2006 Sep; 31(18):2783-5. PubMed ID: 16936891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.
    Serbin J; Ovsianikov A; Chichkov B
    Opt Express; 2004 Oct; 12(21):5221-8. PubMed ID: 19484080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material.
    Ventura MJ; Bullen C; Gu M
    Opt Express; 2007 Feb; 15(4):1817-22. PubMed ID: 19532420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals.
    Nicoletti E; Zhou G; Jia B; Ventura MJ; Bulla D; Luther-Davies B; Gu M
    Opt Lett; 2008 Oct; 33(20):2311-3. PubMed ID: 18923606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization.
    Serbin J; Gu M
    Opt Express; 2006 Apr; 14(8):3563-8. PubMed ID: 19516503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8.
    Williams HE; Freppon DJ; Kuebler SM; Rumpf RC; Melino MA
    Opt Express; 2011 Nov; 19(23):22910-22. PubMed ID: 22109168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar cavity modes in void channel polymer photonic crystals.
    Ventura M; Straub M; Gu M
    Opt Express; 2005 Apr; 13(7):2767-73. PubMed ID: 19495170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal.
    Subramania G; Lee YJ; Brener I; Luk TS; Clem PG
    Opt Express; 2007 Oct; 15(20):13049-57. PubMed ID: 19550574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.