These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 15456055)

  • 1. Intra-operative measurement of vertebral bone strength.
    Bardas AM; Raso VJ; Ouellette NW; Moreau MJ; Mahood JK; Fyfe KR
    Stud Health Technol Inform; 2002; 88():326-30. PubMed ID: 15456055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modelling of hooks for use as intra-operative force sensors.
    Duke KK; Fyfe KR; Moreau MJ; Mahood JK; Raso VJ; Hill DL
    Stud Health Technol Inform; 2002; 88():350-5. PubMed ID: 15456060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation.
    van Laar W; Meester RJ; Smit TH; van Royen BJ
    Eur Spine J; 2007 Aug; 16(8):1209-14. PubMed ID: 17203270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrective force analysis for scoliosis from implant rod deformation.
    Salmingo R; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):545-50. PubMed ID: 22321374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-operative spinal load and displacement monitoring: towards a better understanding of scoliosis correction mechanics.
    Mondoux J; Lou E; Raso VJ; Hill D; Mahood J; Moreau M
    Stud Health Technol Inform; 2006; 123():513-8. PubMed ID: 17108478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements: a feasibility study].
    Poulin F; Aubin CE; Stokes IA; Gardner-Morse M; Labelle H
    Ann Chir; 1998; 52(8):761-7. PubMed ID: 9846426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis.
    Sun E; Alkalay R; Vader D; Snyder BD
    J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of pedicle screws versus pedicle and laminar hooks in the thoracic spine.
    Cordista A; Conrad B; Horodyski M; Walters S; Rechtine G
    Spine J; 2006; 6(4):444-9. PubMed ID: 16825053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumented forceps for measuring tensile forces in the rod of the VDS implant during correction of scoliosis.
    Klöckner C; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2003 Dec; 48(12):362-4. PubMed ID: 14740525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Vertebral pedicle screw-rods system for correcting paralytic scoliosis].
    Chen J; Qin S; Jiao S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):19-22. PubMed ID: 17304997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique.
    Mahar AT; Bagheri R; Oka R; Kostial P; Akbarnia BA
    Spine J; 2008; 8(6):933-9. PubMed ID: 18082463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness.
    Anderson AL; McIff TE; Asher MA; Burton DC; Glattes RC
    Spine (Phila Pa 1976); 2009 Mar; 34(5):441-6. PubMed ID: 19247164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative planning simulator for spinal deformity surgeries.
    Aubin CE; Labelle H; Chevrefils C; Desroches G; Clin J; Eng AB
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2143-52. PubMed ID: 18794755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bone materials on the screw pull-out strength in human spine.
    Zhang QH; Tan SH; Chou SM
    Med Eng Phys; 2006 Oct; 28(8):795-801. PubMed ID: 16414303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Design and animal study of a posterior instrumentation system with sliding ring pedicle screws without arthrodesis in the immature spine].
    Wang Y; Zhou JS; Song WH; Zhang XS; Wang Z
    Zhonghua Wai Ke Za Zhi; 2008 Mar; 46(5):357-9. PubMed ID: 18785532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of cantilever "plow" during anterior thoracic scoliosis correction.
    Mahar AT; Brown DS; Oka RS; Newton PO
    Spine J; 2006; 6(5):572-6. PubMed ID: 16934730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.