BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 15456060)

  • 1. Computer modelling of hooks for use as intra-operative force sensors.
    Duke KK; Fyfe KR; Moreau MJ; Mahood JK; Raso VJ; Hill DL
    Stud Health Technol Inform; 2002; 88():350-5. PubMed ID: 15456060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-operative measurement of vertebral bone strength.
    Bardas AM; Raso VJ; Ouellette NW; Moreau MJ; Mahood JK; Fyfe KR
    Stud Health Technol Inform; 2002; 88():326-30. PubMed ID: 15456055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-operative spinal load and displacement monitoring: towards a better understanding of scoliosis correction mechanics.
    Mondoux J; Lou E; Raso VJ; Hill D; Mahood J; Moreau M
    Stud Health Technol Inform; 2006; 123():513-8. PubMed ID: 17108478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation.
    Duke K; Aubin CE; Dansereau J; Labelle H
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):923-31. PubMed ID: 16061317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preoperative planning simulator for spinal deformity surgeries.
    Aubin CE; Labelle H; Chevrefils C; Desroches G; Clin J; Eng AB
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2143-52. PubMed ID: 18794755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical simulation of Colorado instrumentation of the scoliotic spine: a preliminary study.
    Verniest F; Petit Y; Chopin D; Godillon-Maquinghen AP; Cheriet F; Drazetic P; Aubin CE
    Stud Health Technol Inform; 2002; 88():415-8. PubMed ID: 15456074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical modeling of anterior spine instrumentation in AIS.
    Desroches G; Aubin CE; Rivard CH
    Stud Health Technol Inform; 2006; 123():415-8. PubMed ID: 17108461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between patient positioning, trunk flexibility and surgical correction of the scoliotic spine.
    Petit Y; Aubin CE; Labelle H
    Stud Health Technol Inform; 2002; 88():400-3. PubMed ID: 15456070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of alternative instrumentation strategies in adolescent idiopathic scoliosis: a biomechanical analysis.
    Robitaille M; Aubin CE; Labelle H
    J Orthop Res; 2009 Jan; 27(1):104-13. PubMed ID: 18634064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic positioning of scoliotic patients during spine instrumentation surgery.
    Duke K; Aubin CE; Dansereau J; Koller A; Labelle H
    J Spinal Disord Tech; 2009 May; 22(3):190-6. PubMed ID: 19412021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental scoliosis in the rat. II. Biomechanical analysis of the forces during Harrington distraction.
    Dabney KW; Salzman SK; Wakabayashi T; Sarwark JF; Gao GX; Beckman AL; Bunnell WP
    Spine (Phila Pa 1976); 1988 May; 13(5):472-7. PubMed ID: 3187691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique.
    Mahar AT; Bagheri R; Oka R; Kostial P; Akbarnia BA
    Spine J; 2008; 8(6):933-9. PubMed ID: 18082463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Transversal loading system in addition to the Harrington instruments (author's transl)].
    Pellin B; Zielke K
    Z Orthop Ihre Grenzgeb; 1975 Oct; 113(5):880-6. PubMed ID: 1202793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical study of Chiba Solid Rod System for scoliosis surgery.
    Nakata Y
    Nihon Seikeigeka Gakkai Zasshi; 1991 Nov; 65(11):1017-27. PubMed ID: 1761902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis.
    Sun E; Alkalay R; Vader D; Snyder BD
    J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis.
    Nie WZ; Ye M; Liu ZD; Wang CT
    J Biomech Eng; 2009 Apr; 131(4):041007. PubMed ID: 19275436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical assessment of variable instrumentation strategies in adolescent idiopathic scoliosis: preliminary analysis of 3 patients and 6 scenarios.
    Robitaille M; Aubin CE; Labelle H
    Stud Health Technol Inform; 2006; 123():309-14. PubMed ID: 17108444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element simulation of various strategies for CD correction.
    Lafage V; Dubousset J; Lavaste F; Skalli W
    Stud Health Technol Inform; 2002; 91():428-32. PubMed ID: 15457770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.