These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 15456255)

  • 1. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field.
    Carosati E; Sciabola S; Cruciani G
    J Med Chem; 2004 Oct; 47(21):5114-25. PubMed ID: 15456255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorine bonding--how does it work in protein-ligand interactions?
    Zhou P; Zou J; Tian F; Shang Z
    J Chem Inf Model; 2009 Oct; 49(10):2344-55. PubMed ID: 19788294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated ligand placement and refinement with a combined force field and shape potential.
    Wlodek S; Skillman AG; Nicholls A
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):741-9. PubMed ID: 16790930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF; Gohlke H; Klebe G
    J Med Chem; 2005 Oct; 48(20):6296-303. PubMed ID: 16190756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.
    Friesner RA; Murphy RB; Repasky MP; Frye LL; Greenwood JR; Halgren TA; Sanschagrin PC; Mainz DT
    J Med Chem; 2006 Oct; 49(21):6177-96. PubMed ID: 17034125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the nature of three-centered hydrogen bonds in minor-groove ligand-DNA interactions: the contribution of fluorine hydrogen bonds to complex stability.
    Sun Z; McLaughlin LW
    J Am Chem Soc; 2007 Oct; 129(41):12531-6. PubMed ID: 17894492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorine-protein interactions and ¹⁹F NMR isotropic chemical shifts: An empirical correlation with implications for drug design.
    Dalvit C; Vulpetti A
    ChemMedChem; 2011 Jan; 6(1):104-14. PubMed ID: 21117131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm.
    Wu G; Robertson DH; Brooks CL; Vieth M
    J Comput Chem; 2003 Oct; 24(13):1549-62. PubMed ID: 12925999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.
    Mao L; Wang Y; Liu Y; Hu X
    J Mol Biol; 2004 Feb; 336(3):787-807. PubMed ID: 15095988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propensities of polar and aromatic amino acids in noncanonical interactions: nonbonded contacts analysis of protein-ligand complexes in crystal structures.
    Imai YN; Inoue Y; Yamamoto Y
    J Med Chem; 2007 Mar; 50(6):1189-96. PubMed ID: 17315854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong and weak hydrogen bonds in the protein-ligand interface.
    Panigrahi SK; Desiraju GR
    Proteins; 2007 Apr; 67(1):128-141. PubMed ID: 17206656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition.
    Sarkhel S; Desiraju GR
    Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding.
    Pierce AC; Sandretto KL; Bemis GW
    Proteins; 2002 Dec; 49(4):567-76. PubMed ID: 12402365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORES: an automated method for generating three-dimensional models of protein/ligand complexes.
    Hare BJ; Walters WP; Caron PR; Bemis GW
    J Med Chem; 2004 Sep; 47(19):4731-40. PubMed ID: 15341488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands.
    Klebe G
    J Mol Biol; 1994 Mar; 237(2):212-35. PubMed ID: 8126735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEMDOCK: a generic evolutionary method for molecular docking.
    Yang JM; Chen CC
    Proteins; 2004 May; 55(2):288-304. PubMed ID: 15048822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse, high-quality test set for the validation of protein-ligand docking performance.
    Hartshorn MJ; Verdonk ML; Chessari G; Brewerton SC; Mooij WT; Mortenson PN; Murray CW
    J Med Chem; 2007 Feb; 50(4):726-41. PubMed ID: 17300160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A binary hydrogen bonding motif based on homochiral recognition: crystal structures and hydrogen bonding networks of meso-(R,S)-bis(trifluorolactate)s.
    Takahashi S; Katagiri T; Uneyama K
    Chem Commun (Camb); 2005 Aug; (29):3658-60. PubMed ID: 16027902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical fragments that hydrogen bond to Asp, Glu, Arg, and His side chains in protein binding sites.
    Chan AW; Laskowski RA; Selwood DL
    J Med Chem; 2010 Apr; 53(8):3086-94. PubMed ID: 20230000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures.
    Hooft RW; Sander C; Vriend G
    Proteins; 1996 Dec; 26(4):363-76. PubMed ID: 8990493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.