These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 15456324)
1. Implantable flow-through capillary-type microdialyzers for continuous in situ monitoring of environmentally relevant parameters. Miró M; Frenzel W Anal Chem; 2004 Oct; 76(19):5974-81. PubMed ID: 15456324 [TBL] [Abstract][Full Text] [Related]
2. A novel flow-through microdialysis separation unit with integrated differential potentiometric detection for the determination of chloride in soil samples. Miró M; Frenzel W Analyst; 2003 Oct; 128(10):1291-7. PubMed ID: 14667168 [TBL] [Abstract][Full Text] [Related]
3. Automated microdialysis-based system for in situ microsampling and investigation of lead bioavailability in terrestrial environments under physiologically based extraction conditions. Rosende M; Magalhães LM; Segundo MA; Miró M Environ Sci Technol; 2013 Oct; 47(20):11668-75. PubMed ID: 24016003 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. Allan IJ; Knutsson J; Guigues N; Mills GA; Fouillac AM; Greenwood R J Environ Monit; 2007 Jul; 9(7):672-81. PubMed ID: 17607387 [TBL] [Abstract][Full Text] [Related]
5. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples. Buanuam J; Tiptanasup K; Shiowatana J; Miró M; Harald Hansen E J Environ Monit; 2006 Dec; 8(12):1248-54. PubMed ID: 17133282 [TBL] [Abstract][Full Text] [Related]
6. On-line coupling of microdialysis sampling with microchip-based capillary electrophoresis. Huynh BH; Fogarty BA; Martin RS; Lunte SM Anal Chem; 2004 Nov; 76(21):6440-7. PubMed ID: 15516139 [TBL] [Abstract][Full Text] [Related]
7. Performance optimization of a membrane assisted passive sampler for monitoring of ionizable organic compounds in water. Chimuka L; Nemutandani T; Cukrowska E; Tutu H J Environ Monit; 2008 Jan; 10(1):129-35. PubMed ID: 18175026 [TBL] [Abstract][Full Text] [Related]
8. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. Tao Y; Liu JF; Hu XL; Li HC; Wang T; Jiang GB J Chromatogr A; 2009 Aug; 1216(35):6259-66. PubMed ID: 19632683 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of microvolume regenerated cellulose (RC) microdialysis fibers for the sampling and detection of ammonia in air. Tang H; Thompson JE Talanta; 2010 Jun; 81(4-5):1350-6. PubMed ID: 20441906 [TBL] [Abstract][Full Text] [Related]
10. A novel dynamic approach for automatic microsampling and continuous monitoring of metal ion release from soils exploiting a dedicated flow-through microdialyser. Miró M; Jimoh M; Frenzel W Anal Bioanal Chem; 2005 May; 382(2):396-404. PubMed ID: 15856199 [TBL] [Abstract][Full Text] [Related]
12. Use of simultaneous dual-probe microdialysis for the determination of pesticide residues in a jade plant (Crassula ovata). Zhou SN; Oakes KD; Servos MR; Pawliszyn J Analyst; 2009 Apr; 134(4):748-54. PubMed ID: 19305926 [TBL] [Abstract][Full Text] [Related]
13. Calibration and field performance of membrane-enclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water. Vrana B; Paschke A; Popp P Environ Pollut; 2006 Nov; 144(1):296-307. PubMed ID: 16516361 [TBL] [Abstract][Full Text] [Related]
14. The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Empore SDB-RPS disks. Vermeirssen EL; Asmin J; Escher BI; Kwon JH; Steimen I; Hollender J J Environ Monit; 2008 Jan; 10(1):119-28. PubMed ID: 18175025 [TBL] [Abstract][Full Text] [Related]
15. Calibration and use of the Chemcatcher passive sampler for monitoring organotin compounds in water. Aguilar-Martínez R; Palacios-Corvillo MA; Greenwood R; Mills GA; Vrana B; Gómez-Gómez MM Anal Chim Acta; 2008 Jun; 618(2):157-67. PubMed ID: 18513537 [TBL] [Abstract][Full Text] [Related]
16. Experimental and theoretical microdialysis studies of in situ metabolism. Stenken JA; Holunga DM; Decker SA; Sun L Anal Biochem; 2001 Mar; 290(2):314-23. PubMed ID: 11237334 [TBL] [Abstract][Full Text] [Related]
17. Application of Chemcatcher passive sampler for monitoring levels of mercury in contaminated river water. Aguilar-Martínez R; Gómez-Gómez MM; Greenwood R; Mills GA; Vrana B; Palacios-Corvillo MA Talanta; 2009 Feb; 77(4):1483-9. PubMed ID: 19084668 [TBL] [Abstract][Full Text] [Related]
18. [Subcutaneous microdialysis: a simple technique for monitoring the extracellular biochemical environment. Combination with capillary electrophoresis and laser-induced fluorescence detection]. Páez X; Mazzei-Dávila CA; Hernández L Invest Clin; 2003 Sep; 44(3):227-39. PubMed ID: 14552061 [TBL] [Abstract][Full Text] [Related]
19. In vivo and in vitro microdialysis sampling of free fatty acids. Jensen SM; Hansen HS; Johansen T; Malmlöf K J Pharm Biomed Anal; 2007 Apr; 43(5):1751-6. PubMed ID: 17240099 [TBL] [Abstract][Full Text] [Related]
20. Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes. Liu JF; Toräng L; Mayer P; Jönsson JA J Chromatogr A; 2007 Aug; 1160(1-2):56-63. PubMed ID: 17449052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]