BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15457702)

  • 1. Mechanical modulation of vertebral and tibial growth: diurnal versus full-time loading.
    Stokes IA; Gwadera J; Dimock A; Aronsson DD
    Stud Health Technol Inform; 2002; 91():97-100. PubMed ID: 15457702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading.
    Stokes IA; Gwadera J; Dimock A; Farnum CE; Aronsson DD
    J Orthop Res; 2005 Jan; 23(1):188-95. PubMed ID: 15607892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease.
    Grover JP; Vanderby R; Leiferman EM; Wilsman NJ; Noonan KJ
    J Pediatr Orthop; 2007; 27(5):485-92. PubMed ID: 17585254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of mechanical loading on the mRNA expression of growth-plate cells.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Stud Health Technol Inform; 2002; 91():114-8. PubMed ID: 15457706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate.
    Ménard AL; Grimard G; Valteau B; Londono I; Moldovan F; Villemure I
    J Orthop Res; 2014 Sep; 32(9):1129-36. PubMed ID: 24902946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension.
    Stokes IA; Aronsson DD; Dimock AN; Cortright V; Beck S
    J Orthop Res; 2006 Jun; 24(6):1327-34. PubMed ID: 16705695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates.
    Wilsman NJ; Farnum CE; Green EM; Lieferman EM; Clayton MK
    J Orthop Res; 1996 Jul; 14(4):562-72. PubMed ID: 8764865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Connect Tissue Res; 2005; 46(4-5):211-9. PubMed ID: 16546824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the growth plate associated with growth modulation by sustained compression or distraction.
    Stokes IA; Clark KC; Farnum CE; Aronsson DD
    Bone; 2007 Aug; 41(2):197-205. PubMed ID: 17532281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia.
    Reijnders CM; Bravenboer N; Tromp AM; Blankenstein MA; Lips P
    J Endocrinol; 2007 Jan; 192(1):131-40. PubMed ID: 17210750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical modulation of calf tail vertebral growth: implications for scoliosis progression.
    Aronsson DD; Stokes IA; Rosovsky J; Spence H
    J Spinal Disord; 1999 Apr; 12(2):141-6. PubMed ID: 10229529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocyte apoptosis enhanced at the growth plate: a physeal response to a diaphyseal fracture.
    Gaber S; Fischerauer EE; Fröhlich E; Janezic G; Amerstorfer F; Weinberg AM
    Cell Tissue Res; 2009 Mar; 335(3):539-49. PubMed ID: 19089454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative three-dimensional analysis of chondrocytic kinetic responses to short-term stapling of the rat proximal tibial growth plate.
    Farnum CE; Nixon A; Lee AO; Kwan DT; Belanger L; Wilsman NJ
    Cells Tissues Organs; 2000; 167(4):247-58. PubMed ID: 11014914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical modulation of growth for the correction of vertebral wedge deformities.
    Mente PL; Aronsson DD; Stokes IA; Iatridis JC
    J Orthop Res; 1999 Jul; 17(4):518-24. PubMed ID: 10459757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics.
    Wilsman NJ; Farnum CE; Leiferman EM; Fry M; Barreto C
    J Orthop Res; 1996 Nov; 14(6):927-36. PubMed ID: 8982136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation.
    Valteau B; Grimard G; Londono I; Moldovan F; Villemure I
    Bone; 2011 Nov; 49(5):996-1004. PubMed ID: 21784187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.